Browsing by Author "Cappello, Anna Rita"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Genomics based discovery and anticancer activity assessment of new thioviridamide-like molecules produced by actinobacteria(2019-03-21) Frattaruolo, Luca; Andò, Sebastiano; Cappello, Anna RitaFin dalla scoperta della penicillina da parte di Alexander Fleming nel 1928, i prodotti naturali microbici hanno rappresentato una risorsa essenziale per lo sviluppo di nuovi agenti farmacologici. All’interno dell’immenso panorama di microorganismi che popolano gli ecosistemi terrestri e marini, i batteri appartenenti al phylum Actinobacteria rappresentano la principale fonte di molecole naturali bioattive. Il metabolismo secondario di questi mircroorganismi, infatti, è complesso e molto variabile, ed è responsabile della produzione di molecole molto diverse dal punto di vista chimico, biosintetico e dell’attività biologica. Una classe di metaboliti secondari relativamente recente ma in rapida espansione, è rappresentata dai peptidi sintetizzati a livello ribosomiale e modificati a livello post-traduzionale (RiPPs). Questi prodotti naturali peptidici sono dotati di diverse attività biologiche e un enorme potenziale farmacologico, con uno spettro di attività che include, tra le tante, quella antibatterica, antitumorale, ipolipidemizzante e immunomodulatrice. L’evidenza del potenziale biologico di queste molecole ha, pertanto, spinto l’interesse della ricerca biotecnologica e farmaceutica a concentrarsi su questa classe di metaboliti secondari. L’attenzione è rivolta, in particolare, all’identificazione di nuovi ceppi batterici produttori di RiPPs bioattivi e alla caratterizzazione dei pathway biosintetici, allo scopo di comprendere meglio gli aspetti biochimici alla base della loro biosintesi. In questo scenario si colloca la thioviridamide, RiPP biosintetizzato da Streptomyces olivoviridis NA005001 e caratterizzato da una potente attività antiproliferativa e pro-apoptotica nei confronti di diverse linee cellulari tumorali. Questo composto peptidico, unico nel suo genere, presenta un gruppo 2-idrossi-2-metil-4-oxopentanoile all’estremità N-terminale, un residuo di β-idrossi-N1,N3-dimetilistidinio (hdmHis), un residuo di S-(2-aminovinil)-cisteina (AviCys) che fa parte di un macro-ciclo e cinque gruppi tioammidici che sostituiscono i gruppi ammidici nello scheletro peptidico. Recentemente, il cluster genico responsabile della biosintesi della thioviridamide è stato identificato, dimostrando l'origine ribosomiale di questa molecola, ma i processi biosintetici alla base della sua produzione non sono ancora completamente noti. La promettente attività antitumorale della thioviridamide, così come la sua peculiare struttura chimica e l'interessante pathway biosintetico, rendono questo composto estremamente interessante agli occhi della ricerca. La prima parte di questo lavoro di tesi ha avuto l’obbiettivo di identificare, mediante un approccio genomico, nuovi prodotti naturali, analoghi della thioviridamide, biosintetizzati da Actinobacteria, e di effettuarne la caratterizzazione chimico-funzionale, allo scopo di valutarne il potenziale antitumorale. Studi bioinformatici, basati sull’utilizzo di tools per l’analisi di omologie di sequenza, hanno permesso di individuare, all’interno del vasto panorama di batteri dal genoma noto, microorganismi contenenti nel proprio genoma cluster genici simili a quello responsabile della biosintesi della thioviridamide. I cluster genici identificati in questi microorganismi sono risultati essere leggermente difformi da quello presente in S. olivoviridis, con differenze sia a livello del peptide precursore e sia a livello dei sistemi enzimatici di maturazione che lo convertono in un RiPP maturo. Tali microorganismi, pertanto, appaiono essere potenziali produttori di molecole strutturalmente analoghe alla thioviridamide, con caratteristiche chimiche e biologiche sconosciute alla comunità scientifica. Tre dei diversi ceppi batterici identificati si sono rivelati capaci di produrre, in determinate condizioni sperimentali, molecole analoghe alla thioviridamide: - Thiostreptamide S4, prodotto da Streptomyces sp. NRRL S-4 - Thiostreptamide S87, prodotto da Streptomyces sp. NRRL S-87 - Thioalbamide, prodotto da Amycolatopsis Alba DSM 44262 La correlazione tra i cluster genici e i nuovi prodotti naturali identificati è stata confermata mediante due diversi approcci biologico-molecolari: - la delezione del cluster genico nel ceppo batterico produttore, che ha portato alla generazione di mutanti incapaci di produrre i composti identificati. - l’espressione eterologa del cluster genico, che ha portato alla produzione dei composti precedentemente identificati in un microorganismo ospite, Streptomyces coelicolor M1146. I risultati ottenuti hanno permesso di stabilire che la thioviridamide non è una molecola unica nel suo genere, ma fa parte di una famiglia di composti, identificati in questo studio, a cui è stato dato il nome di thioviridamide-like molecules (TLMs). Uno scale-up dei processi fermentativi ha permesso di purificare i tre nuovi prodotti naturali in quantità sufficenti per la loro caratterizzazione chimica, effettuata mediante spettrometria di massa e di risonanza magnetica nucleare (NMR). Questo studi hanno confermato la diversità. chimica dei TLMs, dal punto di vista della sequenza aminoacidica, sebbene sono risultate essere conservate alcune caratteristiche peculiari della thioviridamide, quali la presenza di un macrociclo, una carica elettrica positiva conferita da un residuo di dimetil-istidinio e la presenza di legami tioammidici nello scheletro peptidico. Inoltre, dai risultati ottenuti è emerso che i TLMs sono caratterizzati dalla presenza all’estremità N-terminale di un gruppo piruvile o lattile, e il gruppo 2-idrossi-2-metil-4-oxopentanoile, caratterizzante l’estremità N-terminale della thioviridamide, è risultato essere un artefatto, generato da una reazione di condensazione aldolica tra il gruppo piruvile della molecola naturale e l’acetone utilizzato come solvente nel processo di purificazione. La thioalbamide, il prodotto naturale purificato in maggiore quantità, è stato quindi oggetto di indagini biologiche al fine di valutarne l’attività antiproliferativa e il potenziale antitumorale. I risultati ottenuti hanno evidenziato un’intensa attività antiproliferativa nei confronti di una vasta gamma di linee cellulari tumorali. Questi effetti sono risultati essere altamente selettivi per le cellule tumorali, in quanto il composto ha mostrato scarsa attività in un modello cellulare non tumorale. La seconda parte di questo lavoro di tesi ha avuto l’obbiettivo di investigare a fondo sui meccanismi molecolari alla base dell’attività antitumorale della thioalbamide in diversi modelli in vitro di carcinoma mammario, il tumore maggiormente diagnosticato tra le donne nel mondo. In questa parte del lavoro è stato utilizzato un approccio biochimico-metabolico, per valutare per la prima volta, gli effetti cellulari indotti dalla thioalbamide in linee cellulari tumorali che riflettono la diversità biologica dei diversi sottotipi di carcinoma mammario. Nei diversi modelli utilizzati, la molecola non ha mostrato significative differenze di attività antiproliferativa, dimostrando che il suo potenziale antitumorale è indipendente dal profilo recettoriale tumorale. In particolare, la thioalbamide ha dimostrato possedere abilità di indurre cambiamenti morfologici nelle cellule trattate, blocco del ciclo cellulare a livello del checkpoint G1/S e morte cellulare mediata da meccanismi apoptotici. L’apoptosi è stata confermata con diversi approcci sperimentali atti a monitorare diversi eventi chiave del processo di morte programmata, quali la frammentazione del DNA, la perdita del potenziale di membrana mitocondriale e l’esposizione della fosfatidilserina sul foglietto esterno della membrana cellulare. In aggiunta, gli eventi di morte cellulare sono risultati essere il frutto dell’innesco dei pathway apoptotici estrinseco ed intrinseco, mediati rispettivamente dal attivazione proteolitica delle caspasi 8 e 9. Lo studio delle alterazioni biochimiche indotte dalla thioalbamide è proseguito, facendo emergere la capacità del composto di derterminare nella cellula un aumento nella produzione di specie reattive dell’ossigeno (ROS), che si sono rivelate il fenomeno scatenante la morte apoptotica indotta dalla thioalbamide. L’eccessivo aumento dei livelli intracellulari di ROS indotto dal trattamento, è risultato interessare particolarmente il compartimento mitocondriale della cellula. Questa evidenza è emersa dal momento che la cellula tumorale risponde allo stress ossidativo, indotto dal composto, con un aumento selettivo dell’isoforma mitocondriale della superossido dismutasi (SOD2), enzima deputato alla neutralizzazione dell’anione superossido, principale subprodotto della respirazione cellulare. Essendo i ROS generati dal metabolismo cellulare, il loro accumulo e il conseguente stress ossidativo sono spesso associati ad alterazioni dei pathway metabolici. La riprogrammazione metabolica è una delle caratteristiche del cancro, e i tumori richiedono cataboliti per produrre ATP, mantenere un equilibrio redox e generare biomassa. A seconda della disponibilità di nutrienti, alcune cellule all’interno del tumore sono prevalentemente glicolitiche, mentre altre hanno un fenotipo dipendente dalla fosforilazione ossidativa. Pertanto, in questo lavoro, è stato valutato anche il profilo energetico delle cellule trattate con thioalbamide, e i risultati ottenuti hanno evidenziato la capacità di questo prodotto naturale di inibire la glicolisi e la fosforilazione ossidativa, i due principali pathway energetici cellulari. Il metabolismo della cellula tumorale rappresenta un potenziale target per la terapia oncologica. Infatti, è noto che le cancer stem cells (CSCs), la sottopopolazione di cellule tumorali responsabile dell’insorgenza di fenomeni di recidiva e metastatizzazione, sono caratterizzate da una elevata flessibilità metabolica. La thioalbamide, spegnendo il metabolismo energetico tumorale, si è rivelata in grado di inibire la crescita e propagazione delle CSCs, riducendo l’efficienza di formazione di mammospheres (MFE). Nel complesso, questo lavoro di dottorato ha portato alla luce nuove conoscenze sui metaboliti secondari microbici, identificando nuovi membri della classe dei RiPPs che da oggi costituiscono la famiglia delle thioviridamide-like molecules (TLMs). Inoltre, per la prima volta, sono stati studiati i meccanismi molecolari indotti da questi nuovi prodotti naturali e, dai risultati ottenuti, è emerso che l’elevato potenziale antitumorale della thioalbamide è dovuto alla sua capacità di spegnere il metabolismo energetico della cellula maligna.Item Study of antimicrobial and anticancer activity of new synthetic and natural tools(2017-06-12) Dhanyalayam, Dhanya; Andò, Sebastiano; Cappello, Anna Rita;Infectious diseases and cancer are the two disease groups that representing the major cause of death worldwide. Unfortunately, antibiotic resistance is the biggest threat in the first case; in fact, new resistance mechanisms continuously are emerging and spreading globally, threatening the ability to treat common infectious diseases. A growing list of infections caused by bacteria, viruses, parasites etc. are becoming harder and harder to treat, and sometimes impossible, as antibiotics become less effective. Without urgent action, we are heading for a post-antibiotic era, in which common infections and minor injuries can once again kill the human population. Concerning cancer, Resistance to chemotherapy and molecularly targeted therapies is a major problem in current research. Drugs side effects and toxicity to normal body cells is also an important threat in cancer treatments. In this regard, these problems are at the forefront of scientific research and technological innovation and are leading to the development of new therapeutic approaches against cancer and infectious disease with fewer side effects and lesser resistance problems. The aim of the present study was to investigate on the new compounds in order to find new possible therapeutic agents against bacteria, parasites and cancer. Infectious diseases are caused by microorganisms such as bacteria, parasites, viruses etc.; in particular, bacterial infectious diseases are caused by either Gram +ve or Gram -ve bacteria. Certainly, antibiotics are the main weapon against infectious bacterial diseases; however, the uncontrolled use of antibiotics to control infections in humans, animals and in agriculture caused the development of drug resistance by bacterial populations. Besides this, infections caused by Gram -ve bacteria are difficult to treat due to the presence of a protective outer membrane consisting of lipopolysaccharides. Therefore, it is clear that there is a need to develop novel classes of antibacterial agents capable of killing bacteria through mechanisms unlike those of the known classes of antibiotics. Then, scientists are currently searching for new approaches to treat infectious diseases, particularly those caused by Gram -ve bacteria, focusing on exactly how the pathogens change and how drug resistance evolves. Since ancient times, metal complexes have been used as antibacterial compounds, metallic silver and silver salts are good examples of this. Silver compounds are particularly interesting since their antibacterial activity can be altered by changing the ligand associated with the silver complex. To date, among silver derivatives, silver sulfadiazine remains one of the most commonly-used antibacterial drugs. Therefore, metal N-heterocyclic carbene (MNHC) complexes appeared as an emerging field of research in medicinal chemistry where NHC complexes of coinage metals (Cu, Au, and Ag) proved to be better antimicrobial agents. Herein, it was investigated the, in vitro, antibacterial activity of the newly synthesized silver (Ag) complexes, Iodide[N-methyl-N-(2-hydoxy-cyclopentyl-imidazole-2ylidine]silver(I), Iodide[N-methyl-N-(2-hydoxy-cyclohexyl)-imidazole-2-ylidine]silver(I) and Iodide[N-methyl- N-(2-hydoxy-2-phenyl)ethyl-imidazole-2-ylidine]silver(I), namely AgL6, AgL18 and AgL20, against two Gram +ve (Staphylococcus aureus, Streptococcus pyogenes) and three Gram -ve (Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa) bacteria. Among these, AgL6 showed good antibacterial activity against both Gram +ve and Gram -ve bacteria. However, the minimum inhibitory concentration (MIC) value was 32 μg/mL for Gram +ve and 16 μg/mL for Gram -ve bacteria, which was higher than that displayed by commercial drug, used as control (Silver Sulfadiazine, AgSD). We therefore hypothesized that the poor activity is due to the poor intake of the compound. In order to enhance its antibacterial activity, we have developed “a pharmaceutically-oriented device”, a nanocarrier as a tool for targeted drug delivery. Here it was described, for the first time, the production of a polymer nanostructure in which dextran, a biopolymer, and oleate residues represent the hydrophilic and hydrophobic parts, respectively. This nanoparticle was loaded with AgL6 and the antibacterial activity has been investigated. The results were very interesting, with MIC values being reduced four-fold for both Gram +ve and Gram -ve bacteria. Surprisingly, these values were two-fold lower than for silver sulfadiazine. Briefly, our results showed that K. pneumoniae and E. coli are the most susceptible bacteria to AgL6, followed by P. aeruginosa. In conclusion, the investigated compound AgL6 showed excellent potentiality against bacterial infections. According to the World Health Organization (WHO), 17 diseases caused by bacteria and parasites have been classified as neglected tropical diseases (NTDs). NTDs are endemic in 149 tropical and subtropical countries and affect more than 1 billion people, including 875 million children. These diseases are responsible for over 500,000 deaths per year and are characterized by severe pain and long term disability. Human African Trypanosomiasis (sleeping sickness) is an important disease among them and is caused by two parasites of the genus Trypanosome: Trypanosome brucei rhodesiense and Trypanosome brucei gambiense. Trypanosomiasis is a disease with a devastating socio-economic impact in sub-Saharan Africa through direct infection of humans and livestock. This disease is fatal if left untreated. Current therapy relies on five drugs that have many limitations among which acute toxicity, problems with oral absorption and emergence of trypanosomal resistance, this latter is a major concern owing to the absence of vaccines and therapeutic alternatives. Therefore pharmaceutical research is aimed at the discovery of new drugs, although the investment in this therapeutic area is not attractive owing to the prospect of poor financial returns. Many pharmaceutical industries have already utilized an opportunistic approach by utilizing drugs long since used for other diseases, a process known as “repurposing” of the drug. It is estimated that over half of the drugs used today are derived from natural sources. In the present study, in a search for molecules with trypanocida activity, it was screened 2000 natural extracts from Fungi and Actinomycetes. The extracts showing activity were selected, and the active compound was identified by liquid chromatography and mass spectroscopy. Chaetocin is one of the molecules identified which showed good trypanocidal activity when tested in vitro. Chaetocin is already used as an antibacterial and anticancer drug, here it was repurposed as drug against trypanosomiasis. The results were very surprising because the trypanocidal activity was in the nanomolar range; the IC50 value was found to be 8.3 nM. Next, it was investigated on its mechanism of action. In chaetocin treated cells, morphological changes and chromatin degradation were identified, by fluorescence microscopy and cell-cycle arrest during the G2 phase was proven by cytometry analysis. Finally, it was hypothesized that the enzyme histone methyl transferase, an important enzyme acting in the G2 phase, could be the target for this drug.This study displayed that chaetocin could have great potentiality in the fight against the deadly trypanosomiasis. However, further studies will be needed to reveal whether this compound can cross the blood-brain barrier. In the third part of this thesis it was evaluated the synthesis and anticancer activity of some phosphonium salts. Phosphonium salts are a class of lipophilic cationic molecules that accumulate preferentially in mitochondria and inhibit the growth of human cancer cell lines The aim of the present study was to investigate the effects of a lipophilic phosphonium salt, (11-methoxy, 11-oxoundecyl)triphenylphosphonium bromide (MUTP) along with two other newly synthesized phosphine oxide salts, 3,3’-(methylphosphoryl)dibenzenaminium chloride and 3,3’-(phenylphosphoryl)dibenzenaminium chloride (SBAMPO and SBAPPO) on proliferation, in two human cancer cell lines: human breast cancer cells (MCF-7) and human uterine cervix adenocarcinoma cells (HeLa) and to elucidate their mechanism. The cancer cell mitochondrial membrane potential is relatively high when compared to normal cells, this force the phosphonium salts to accumulate, preferencially, in the mitochondria and inhibit their function. The results showed that only MUTP exhibits anti-proliferative effects on both cell lines, without affecting normal breast epithelial cell proliferation. More specifically, it was demonstrated that MUTP treatment of breast cancer cells is associated with impaired cell cycle progression, as determined by cytometry analysis. The G1/S cell cycle arrest was confirmed by an increased expression level of two proteins involved in cell cycle regulation, p21 and p53. Recently, there has been a surge of interest in developing compounds selectively targeting mitochondria for the treatment of neoplasms. The critical role of mitochondria in cellular metabolism and respiration supports this therapeutic rationale. Dysfunction in the processes of energy production and metabolism contributes to attenuation of response to pro-apoptotic stimuli and increased ROS production both of which are implicated in the initiation and progression of most human cancers. Therefore, in order to characterize the mitochondrial function in MCF7 cells, after MUTP treatment, the cells were stained with specific metabolic probes and analyzed by FACS. The outcomes displayed that MUTP treatment decreased mitochondrial mass and mitochondrial membrane potential and increased the ROS production. In agreement with these findings, the reduction in the expression of the mitochondrial oxidative pathway (OXPHOS) enzymes revealed a bioenergetics failure, induced by MUTP, in treated cells. TUNEL assay, DNA Laddering and Western blot analysis of caspase-3, caspase-9 and Bax confirmed the apoptotic effect of MUTP treatment. Taken together, all these data suggest that MUTP may be capable of selectively targeting neoplastic cell growth and therefore has potential applications as an anticancer agent.