Browsing by Author "Lanuzza, Marco"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Dual mode logic-based design of variable-precision arithmetic circuits(2019-06-20) Romeo Riera, Paul Patricio; Crupi, Felice; Lanuzza, MarcoThe ever growing technological progress has an unquestionable impact on our society and, with the recent emergence of innovative technological paradigms, such as Internet of Things (IoT), Artificial Intelligence (AI), Virtual Reality (VR), 5G, Edge Computing, etc, it is expected that it will take a more and more dominant role in the coming decades. Obviously, the full development of all these new technologies requires the design of specialized hardware to faithfully and efficiently implement specific applications and services. In this sense, the demand of electronic circuits and systems with small area, flexible processing capability, high performance, and low energy consumption, has recently become one of the major concerns in different research areas, such as computing, communications, automation, etc. In this context, this thesis work entitled "DUAL MODE LOGIC-BASED DESIGN OF VARIABLE-PRECISION ARITHMETIC CIRCUITS" aims to provide a contribution in the research of new design solutions for energy-efficient computing platforms, while also keeping high performance. In this regard, several strategies can be explored at different design abstraction levels, from system-level down to device-level. Among these, the design of variable-precision arithmetic circuits is a well-known approach to achieve more energy-efficient computing platforms when dealing with lossy multimedia applications (e.g., audio/video/image processing) where a reduction of the operation precision can be typically tolerated under the acceptable accuracy loss. At the same time, other solutions can be implemented at both circuit- and logic-level. In this regard, a new logic 8 family, namely Dual Mode Logic (DML), has recently emerged as an alternative design methodology to the existing digital design techniques. It was originally proposed as a combination of CMOS static and dynamic logics to allow on-the-fly controllable switching at the gate level between static and dynamic operation modes according to system requirements, input-driven control, and/or by designer considerations. Such modularity typically offers greater performance/energy trade-off flexibility in the design and optimization of digital circuits, especially for applications with a flexible workload, such as in multi-precision arithmetic circuits. In this thesis work, the benefits of the DML design approach with respect to the standard CMOS style are first highlighted on a flexible circuit benchmarck, consisting of 10 levels of 11-stage NAND/NOR chains. In this case, the DML implementation takes advantage of its capability that allows operating in a combined (mixed) mode, i.e. working at the same time partly statically and partly dynamically, thus leading to fully exploit the benefits of the two DML operation modes for better energy-performance trade-offs. Then, the flexibility inherently offered by the DML is exploited to design a double-precision (8×8-bit or 16×16-bit) carry-save adder (CSA)-based array multiplier with the aim of demonstrating the potential in combining the two aforementioned design solutions (i.e., multi-precision computing and DML methodology) in the design and optimization of arithmetic circuits. As a matter of fact, the DML dual operation ability is potentially very attractive to efficiently trade performance and energy consumption between the operations at different precisions in on-demand multi-precision digital circuits. This occurs in the proposed DML multiplier working in a mixed operation mode, i.e., by employing the DML static and dynamic mode for lower- and higher-precision operations, respectively. On one hand, the use 9 of the dynamic mode for higher-precision operations ensures higher performance as compared to its standard static CMOS counterpart (16% gain on average) at the cost of higher energy consumption. On the other hand, such energy penalty is counterbalanced at lower-precision operations for which the static mode is enabled in the DML circuit. Overall, the adoption of the mixed operation mode in the proposed DML multiplier proves to be beneficial to achieve a better performance/energy trade-off with respect to the standard static CMOS implementation and to the cases when using the DML static or dynamic mode for both operations at the two different precisions. When compared to its CMOS counterpart, the proposed DML design operating in the mixed mode exhibits an average improvement of 15% in terms of energy-delay product (EDP) under wide-range supply voltage scaling. Such benefit is maintained over process-voltage-temperature (PVT) variations.Item Investigation of Silicon Solar Cells by Means of Electro-Optical Numerical Simulations(2012-12-17) De Rose, Raffaele; Bilotta, Eleonora; Lanuzza, MarcoItem Low voltage digital design exploiting dynamic body biasing techniques(2017-02-13) Taco Lasso, Edison Ramiro; Pantano, Pietro; Lanuzza, MarcoLo scaling della tensione di alimentazione (VDD) al di sotto della tensione di soglia dei transistor (VTH) è uno degli approcci più efficaci per ottenere un basso consumo energetico a discapito di un’elevata riduzione delle pre-stazioni e una sensibilità molto più elevata alle variazioni di processo e di temperatura. Sebbene accettabile per un mercato di nicchia, l’elevato ritar-do e la ridotta robustezza dei circuiti sottosoglia CMOS convenzionali possono essere molto limitativi per una gamma più ampia di applicazioni. Al fine di incrementare le prestazioni e la robustezza contro variazioni di processo e di temperatura, pur mantenendo elevati livelli di efficienza e-nergetica, la tecnica di polarizzazione diretta del bulk/body dei transistori (forward body biasing - FBB) può essere adottata. La tecnica FBB può essere applicata (anche dinamicamente) a diversi li-velli di granularità che vanno dal livello di macroblocco al livello di singo-lo transistor. Applicando la tecnica FBB a livello di macro blocco si riduce il numero di segnali destinati al controllo della tensione di body, riducendo così la complessità del routing. Di contro, si riduce la flessibilità di con-trollo della tensione di soglia dei singoli transistori con un impatto negati-vo sul consumo energetico. Diversamente, l’implementazione della tecnica FBB a livello di singolo transistore permette di gestire con minore granula-rità la tensione di body dei mosfet. Così facendo è possibile agire, incre-mentandone le prestazioni, solo sui transistori che sono coinvolti nella de-terminazione del path critico del circuito. Un esempio di applicazione della tecnica FBB a livello di singolo transi-stor è rappresentato dalla logica a “tensione di soglia dinamica” (DTMOS). Tale logica utilizza transistor i cui terminali di gate sono colle gati al substrato. Di conseguenza, la tensione di soglia del dispositivo cambia dinamicamente in funzione della tensione di gate e quindi della tensione di substrato. Pertanto, nello stato di ON, la tensione di soglia di-minuisce, garantendo così una corrente di ON più elevata rispetto alla con-figurazione standard CMOS. D’altra parte, il comportamento dei transistor in logica DTMOS nello stato di OFF è simile a quello della configurazione CMOS standard. Tuttavia, l'utilizzo della configurazione DTMOS provoca un significativo incremento delle capacità di input rispetto a una porta sta-tica CMOS. Inoltre, la logica DTMOS comporta un maggiore consumo di energia dovuto al verificarsi di eventi di carica/scarica del substrato non necessari per segnali di ingresso che non producono una variazione della tensione di uscita della porta. In questa tesi è stata proposta una tecnica di polarizzazione dinamica del substrato (gate level body biasing - GLBB) da impiegare a livello di porta logica per ridurre il consumo di energia nelle porte logiche DTMOS e ga-rantire allo stesso tempo una maggiore frequenza di switching. L'imple-mentazione di questa tecnica consente di ottenere capacità di input identi-che a quelle delle porte logiche CMOS standard. Inoltre, quando la com-mutazione dei segnali di ingresso non produce un cambiamento di stato della porta logica, le capacità di substrato non si caricano/scaricano come avviene nella logica DTMOS, consentendo perciò un notevole risparmio di energia. Inizialmente, è stato sviluppato un modello analitico per validare la tecnica proposta. In questa prima fase, l'inverter è stato adottato come circuito di riferimento per ricavare le principali linee guida per la progettazione del generatore di polarizzazione del substrato e della sezione logica della por-ta. Inoltre, sono state analizzate anche alcune porte logiche con transistor connessi in serie (ad esempio, NAND2 e NOR2), ottenendo un buon acgati al substrato. Di conseguenza, la tensione di soglia del dispositivo cambia dinamicamente in funzione della tensione di gate e quindi della tensione di substrato. Pertanto, nello stato di ON, la tensione di soglia di-minuisce, garantendo così una corrente di ON più elevata rispetto alla con-figurazione standard CMOS. D’altra parte, il comportamento dei transistor in logica DTMOS nello stato di OFF è simile a quello della configurazione CMOS standard. Tuttavia, l'utilizzo della configurazione DTMOS provoca un significativo incremento delle capacità di input rispetto a una porta sta-tica CMOS. Inoltre, la logica DTMOS comporta un maggiore consumo di energia dovuto al verificarsi di eventi di carica/scarica del substrato non necessari per segnali di ingresso che non producono una variazione della tensione di uscita della porta. In questa tesi è stata proposta una tecnica di polarizzazione dinamica del substrato (gate level body biasing - GLBB) da impiegare a livello di porta logica per ridurre il consumo di energia nelle porte logiche DTMOS e ga-rantire allo stesso tempo una maggiore frequenza di switching. L'imple-mentazione di questa tecnica consente di ottenere capacità di input identi-che a quelle delle porte logiche CMOS standard. Inoltre, quando la com-mutazione dei segnali di ingresso non produce un cambiamento di stato della porta logica, le capacità di substrato non si caricano/scaricano come avviene nella logica DTMOS, consentendo perciò un notevole risparmio di energia. Inizialmente, è stato sviluppato un modello analitico per validare la tecnica proposta. In questa prima fase, l'inverter è stato adottato come circuito di riferimento per ricavare le principali linee guida per la progettazione del generatore di polarizzazione del substrato e della sezione logica della por-ta. Inoltre, sono state analizzate anche alcune porte logiche con transistor connessi in serie (ad esempio, NAND2 e NOR2), ottenendo un buon ac-gati al substrato. Di conseguenza, la tensione di soglia del dispositivo cambia dinamicamente in funzione della tensione di gate e quindi della tensione di substrato. Pertanto, nello stato di ON, la tensione di soglia di-minuisce, garantendo così una corrente di ON più elevata rispetto alla con-figurazione standard CMOS. D’altra parte, il comportamento dei transistor in logica DTMOS nello stato di OFF è simile a quello della configurazione CMOS standard. Tuttavia, l'utilizzo della configurazione DTMOS provoca un significativo incremento delle capacità di input rispetto a una porta sta-tica CMOS. Inoltre, la logica DTMOS comporta un maggiore consumo di energia dovuto al verificarsi di eventi di carica/scarica del substrato non necessari per segnali di ingresso che non producono una variazione della tensione di uscita della porta. In questa tesi è stata proposta una tecnica di polarizzazione dinamica del substrato (gate level body biasing - GLBB) da impiegare a livello di porta logica per ridurre il consumo di energia nelle porte logiche DTMOS e ga-rantire allo stesso tempo una maggiore frequenza di switching. L'imple-mentazione di questa tecnica consente di ottenere capacità di input identi-che a quelle delle porte logiche CMOS standard. Inoltre, quando la com-mutazione dei segnali di ingresso non produce un cambiamento di stato della porta logica, le capacità di substrato non si caricano/scaricano come avviene nella logica DTMOS, consentendo perciò un notevole risparmio di energia. Inizialmente, è stato sviluppato un modello analitico per validare la tecnica proposta. In questa prima fase, l'inverter è stato adottato come circuito di riferimento per ricavare le principali linee guida per la progettazione del generatore di polarizzazione del substrato e della sezione logica della por-ta. Inoltre, sono state analizzate anche alcune porte logiche con transistor connessi in serie (ad esempio, NAND2 e NOR2), ottenendo un buon accordo tra i risultati predetti con il modello analitico e quelli ottenuti con le simulazioni. Successivamente, è stata effettuata un'analisi preliminare su porte logiche basilari per dimostrare che l'impiego della tecnica di polarizzazione del substrato a livello di porta logica consente di ottenere prestazioni superiori alle configurazioni CMOS standard e DTMOS. In seguito, sono state effet-tuate anche simulazioni post-layout di un circuito "mirror full adder" rea-lizzato con la tecnica GLBB per includere gli effetti parassiti della polariz-zazione del substrato. I risultati di queste simulazioni sono stati confrontati con quelli ottenuti per lo stesso circuito realizzato con le tecniche CMOS standard e DTMOS. La progettazione dei circuiti da confrontare è stata re-alizzata utilizzando la tecnologia ST 45-nm bulk CMOS triple-well. I ri-sultati comparativi hanno dimostrato che la tecnica di progettazione GLBB, a parità di consumo di potenza di leakage, consente di ottenere un significativo incremento delle prestazioni con un ridotto consumo di ener-gia, a discapito di una maggiore occupazione di area rispetto alla logica CMOS convenzionale La tecnologia "ultra-thin box and body (UTBB) fully-depleted silicon-on-insulator (FD-SOI)" sta emergendo come una valida soluzione per la pro-gettazione di circuiti a bassissima tensione di funzionamento (ultra low voltage -ULV) in nodi tecnologici sempre più scalati. La presenza di un canale completamente svuotato nei dispositivi realizzati con questa tecno-logia consente di eliminare il problema della fluttuazione causale del dro-gaggio e quindi di ridurre l'impatto della variabilità di processo. Inoltre, il ridotto spessore dell'ossido sepolto (<30 nm) assicura un buon controllo elettrostatico del canale e quindi un più efficace impatto della tecnica di polarizzazione del substrato rispetto alla tecnologia CMOS convenzionale. Quest'ultima rappresenta la caratteristica chiave della tecnologia UTBB FD-SOI, che consente di incrementare i benefici della tecnica FBB nella progettazione di circuiti ULV implementati in nodi tecnologici avanzati. Diversi circuiti di test sono stati implementati nella tecnologia 28-nm STM UTBB FD-SOI allo scopo di ridurre l'occupazione di area dovuto all'uso della tecnica GLBB. Difatti, grazie alla peculiarità offerta da tale tecnolo-gica di integrare transistor PMOS a NMOS in una configurazione a sub-strato comune, notevoli miglioramenti sono stati ottenuti sia in termini di prestazioni che di occupazione di area. L’efficienza della tecnica GLBB per progetti ULV in tecnologia UTBB FD-SOI è stata valutata considerando tre differenti circuiti aritmetici di test in ordine crescente di complessità. Il primo circuito di test considerato è stato un "mirror full adder". Il secondo circuito di test è stato un "ripple carry adder - RCA" a n bit, analizzato per studiare l'impatto delle differenti tecniche di progettazione in un'ampia gamma di condizioni di processo e temperatura. Nelle condizioni TT/27°, la tecnica DTMOS ha mostrato un elevato consumo di energia, principalmente dovuto alle elevate capacità di input nelle porte logiche DTMOS. Al contrario, i circuiti progettati con le tecniche GLBB e CMOS standard hanno esibito un analogo consumo di energia nelle condizioni operative peggiori (worst-case operation), anche in presenza di lunghe catene di full adder. Inoltre, il circuito GLBB ha mo-strato sempre le migliori prestazioni. Ad esempio, con una VDD di 0.4 V, il circuito GLBB consente di ottenere un vantaggio del 33% e del 46% in termini di velocità ed energia rispetto ai circuiti CMOS standard e DTMOS. Infine, è stato analizzato come terzo circuito di test un moltiplicatore 4 x 4-bit Baugh Wooley. Con una VDD di 0.3 V, l’approccio proposto ha porta-to ad una riduzione del ritardo di circa il 30% rispetto al circuito CMOS standard. Questi risultati sono stati ottenuti mantenendo inalterato il consumo di energia, a discapito solo di un incremento di area del 13%. Da un confronto con la logica DTMOS si è ottenuto invece un risparmio di ener-gia di circa il 39% ed una riduzione dell’area del 34%. I precedenti benefi-ci in termini di ritardo ed energia sono mantenuti entro un'ampia gamma di variazioni PVT.Item Progettazione di circuiti a bassissima potenza e tensione per System on Chip energicamente autonomi(Università della Calabria, 2021-05-15) Fassio, Luigi; Crupi, Felice; Lanuzza, MarcoUltra-low power/voltage (ULP/ULV) circuits (both analog and digital blocks) have been gaining considerable interest from the scientific community in the last few years. The advent of the Internet of Things (IoT) era has also increased the interest of the market in ULP/ULV circuits addressed to energy-autonomous and extremely small-sized Systems-on-Chip (SoCs). Wireless sensor networks, biomedical implantable devices, wearable computing, ambient control intelligence, air quality monitoring, warehouse, and agriculture monitoring are just some of the fields that can benefit from ULP/ULV circuits. The design of ULP/ULV circuit blocks for energy-autonomous SoCs is a wide topic and needs some knowledge on several elements that can compose these SoCs. In this regard, this thesis first provides a general overview on energy-autonomous SoCs with a focus on available energy harvesting sources and energy storage solutions. The availability of on-chip energy harvesting/storage opens the route for the development of battery-less IoT sensor nodes and moves the challenge towards the design of ULP/ULV circuits that make the node working even with a small amount of available energy from harvesting. Among various key building blocks of SoCs, this thesis presents the design of voltage/current reference circuits to provide a precise and stable DC bias under a wide range of environmental conditions, a level shifter to interface blocks between different voltage domains, and comparators to interface the analog world with the digital one. More specifically, a low-area voltage reference circuit able to operate at supply voltage as low as 250 mV and 5.4 pW of power consumption at room temperature is first presented. The proposed circuit exploits a body biasing scheme to deal with the effect of voltage/temperature fluctuations and hence to ensure good accuracy of the generated output voltage, as demonstrated through measurements on a test chip fabricated in 180-nm CMOS technology. The design of a current reference circuit based on a voltage generator exploiting the structure used for the voltage reference is also presented and validated by means of silicon measurements on a 180-nm prototype. The proposed circuit properly works down to 0.6 V to generate a current in the nA range with only 4,000-μm2 area occupancy, while reaching high power efficiency as guaranteed by the pW-power consumption of the voltage generator sub-block. Then, the design of a global variation-aware voltage reference based on an on-chip process sensor is proposed with the aim of achieving low sensitivity to process variations and overall good accuracy against process-voltage-temperature (PVT) variations, while also ensuring ULP/ULV operation, i.e., minimum supply voltage of 200 mV and power consumption of only 3.2 pW at room temperature. Experimental results in 180-nm CMOS technology across corner wafers demonstrate the effectiveness of the proposed solution. In addition, the design of a robust level shifter able to convert input voltages from the subthreshold regime (around 100 mV) up to the nominal supply voltage (1.8 V) is presented. The proposed circuit is based on a self-biased low-voltage cascode current mirror topology that features diode-connected PMOS and NMOS transistors to drive the split-input inverting buffer used as output stage with high energy efficiency. Obtained measurement results in 180-nm CMOS technology and across corner wafers demonstrate good robustness and performance of the proposed level shifter as compared to prior art. Finally, the design of an ULP/ULV comparator is proposed by using the dynamic leakage suppression (DLS) logic family. In particular, two different topologies, i.e., a single-stage structure and a dual-stage architecture based on the combination of two single-stage comparator are presented and validated through silicon measurements on 180-nm test chips, which demonstrate a power consumption of few tens of pW. My research activity during PhD concerned the design of innovative ULP/ULV circuits and their validation through silicon measurements. First, a low-area voltage reference circuit able to operate at supply voltage as low as 250 mV and 5.4 pW of power consumption at room temperature was designed and fabricated in 180-nm CMOS technology. The proposed circuit exploits a body biasing scheme to deal with the effect of voltage/temperature fluctuations and hence to ensure good accuracy of the generated output voltage. A current reference circuit based on a voltage generator exploiting the structure used for the voltage reference was also designed and validated by means of silicon measurements on a 180-nm prototype. The proposed current reference properly works down to 0.6 V to generate a current in the nA range with only 4,000-μm2 area occupancy, while reaching high power efficiency as guaranteed by the pW-power consumption of the voltage generator sub-block. Then, the design of a global variation-aware voltage reference based on an on-chip process sensor was realized with the aim of achieving competitive sensitivity to process variations and and overall accuracy against process-voltage-temperature (PVT) variations, while also ensuring ULP/ULV operation (minimum supply voltage of 200 mV and power consumption of only 3.2pW at room temperature). Experimental results in 180-nm CMOS technology across corner wafers demonstrate the effectiveness of the proposed solution. The research activity was also addressed to interfacing blocks between different voltage domains in multiple-voltage systems. In this regard, a robust level shifter able to convert input voltages from the subthreshold regime (around 100 mV) up to the nominal supply voltage (1.8 V) was designed. The proposed circuit is based on a self-biased low-voltage cascode current mirror topology that features diode-connected PMOS and NMOS transistors to drive the split-input inverting buffer used as output stage with high energy efficiency. Obtained measurement results in 180-nm CMOS technology and across corner wafers demonstrate good robustness and performance of the proposed level shifter as compared to prior art. Finally, to interface the analog world with the digital one, an ULP/ULV comparator was designed by using the dynamic leakage suppression (DLS) logic family. Two different topologies, i.e., a single-stage structure and a dual-stage architecture based on the combination of two single-stage comparator were fabricated and validated through silicon measurements on 180-nm test chips, which demonstrated a power consumption of few tens of pW.