Browsing by Author "Strangi, Giuseppe"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Absorpitive losses mitigation in gain-plasmon hybrid systems as optical metamaterials(2013-11-29) Rashed, Alireza Rahimi; Bartolino, Roberto; Versace, Carlo C.; Strangi, GiuseppeIn the past decade, plasmonic nanoparticles (NPs) have gained a lot of interest due to their exceptional and fascinating properties which have been accomplishing vital role in emerging science and technology towards multifunctional applications. The extensive current research efforts in nanoplasmonics trigger towards various opto-electronic and medical applications such as invisibility, perfect lens, increasing the efficiency of solar cells, designing and extra-sensitive single-particle detection of biomolecular recognition and in particular optical metamaterials. The negative real part and the low value of the imaginary part of dielectric permittivity are crucial for applications of nanoparticles as subunits of optical metamaterials. However, the performance of plasmonic nanostructures is significantly limited by the intrinsic and strong energy dissipation in metals, especially in the visible range. In fact, regardless of the challenges to synthesize plasmonic nanostructures, the path to use them as building blocks of optical metamaterial is crossing through the finding a solution to mitigate their optical losses. In this research thesis, it is demonstrated experimentally that the incorporation of gain material such as organic dye molecules and quantum dots in close proximity of enhanced local fields of various properly designed plasmonic systems makes it possible to induce resonant energy transfer processes from gain units to plasmonic nanoparticles, to accompanish loss compensation in optical metamaterials. Steady-state experiments and time resolved spectroscopy along with modification of Rayleigh scattering and optical transmission of a probe beam as a function of impinging energy are crucial evidences of mitigation of absorptive losses in different gain doped plasmonic systems The strategy that has been followed here towards mitigation of absorptive losses in optical metamaterials acts at different spatial scales from nano to macro (see Figure 1). The systems at nano-scale (10-100 nm) are based on dispersion of NPs, in particular, gain assisted (nanoparticle-dye dispersion), gain-functionalized core-shell gold NPs (encapsulated dye molecules into the shell) and dye grafted gold core multimeric nanostructures. The study of such nano-composites allows to recognize experimentally how the parameters such as the geometry and size of the metal nanostructures, inter-particle distance, overlap between emission spectrum of gain material and plasmon band of metal NPs, concentration and quantum yield of donor molecules are playing an important role to create more efficient nonradiative RET processes from donor molecules to acceptors. Figure 1 The followed spatial stages on this research study ranged from (a) nano-scale and (b) mesco scale towards (c) macro scale. The obtained results in nano-scale generate further motivations to move forward to study meso-scale (100-900 nm) plasmonic systems which include both dispersion (nanoshell composites) and bulk (periodic layers of gain materials and lossy metal elements) systems. The nanoshells which are consisted of dye doped dielectric core coated gold shell dispersed in ethanol solution are designed with an optimized ratio of core diameter and metallic shell thickness. The time resolved fluorescence spectroscopy results along with pump-probe experiments on nanoshells are convincing evidences for optical loss mitigation. Finally in third stage, the optical properties of gain-plasmon composites dispersed in PDMS host matrix as an example for bulk samples at the macroscopic scale (1 μm and beyond) have been investigated. The achieved results on this stage can help to design and fabricate such plasmonic structures that lead from fundamental physics towards practical applications. In this regard, the first four chapters provide the background concerning the main elements of this research work. The first chapter contains an introduction to the metamaterials. Second chapter describes the optical properties of plasmonic nanostructures. In third chapter, gain materials and the optical processes beyond these materials have been investigated. The fourth chapter deals with the optical properties of hybrid systems consisted of active materials and nano-plasmonic elements. After providing a brief introduction regarding the applied setups and instruments in this research study in chapter five, the last three chapters represent the acquired experimental results in each mentioned spatial scale. In chapter six, the optical properties of nano-scaled gain-plasmon systems in solution including gain-assisted, gainfunctionalized and dye grafted multimeric samples are investigated. Chapter seven explores the optical characteristics of dispersion of nanoshell sample as an example of the study in mesoscale. Finally, the thesis is completed with the study of the optical features of macro-scaled bulk samples based on core–shell type quantum dots and gold NPs dispersed in PDMS, and a short conclusion of this research study. This study emphasizes effective progress in materials science and paves the way towards further promising scientific research aimed to enable the wide range of electromagnetic properties of plasmonic metamaterialsItem Active plasmonic nanostructures for biomedical applications(Università della Calabria, 2020-03-27) Chatterjee, Sharmistha; Bartolino, Roberto; Strangi, GiuseppeReal-time and label-free detection of protein molecules at ultralow concentration in their natural state is considered the “Holy-Grail” in biomedical research. Protein molecules pop up in the bodily fluids such as saliva, blood serum, at early stage of any infection or disease and circulate throughout the body. Therefore, the emergence of that particular infection or disease can be envisioned through the detection of the signature protein markers. The early detection of the disease would help to start the treatment early, and thus ensure therapeutic success which will eventually increase the survival rates and quality of life. The early detection of protein molecules is necessary for the diagnostics as well as for environmental monitoring, emergency response and homeland security. But the desired detection of protein molecules in the early stage is extremely challenging because of the ultralow concentration of the protein markers in the bodily fluid at the early stage and their acutely small size (< 3 nm). One way to overcome this hurdle is to use the extraordinary electromagnetic responses of noble metal nanoparticles (MNPs). Here stable gold nanostars (AuNS) have been synthesized to use their property for sensing. A surfactant-free, simple, one step wet-chemistry method was used to synthesize these spiky nanoparticles, which were stable in aqueous media for more than five months. Based on their characterization and the numerical analysis, it has been realized that these nanoantennas could be an efficient agent for the early detection of disease. Furthermore, for the marker detection, the heterodimeric nanogap, created between a nanostar antenna tip and a gold nanosphere, was seen to be more effective than those single nanostar antennas because of their higher intensity enhancement capability and also the optimum electric field map at the hot-spots which acts as the binding site for molecule. Both the AuNS antenna and the hybrid one could be easily converted to a biosensor, by anchoring suitable anti-bodies on the surface of the nanoantenna. Surprisingly, these gold nanostar antennas were seen to have both the non-edge breathing modes and the well-known edge dipolar mode. The optically active edge dipolar mode will be useful for the detection of protein molecules by using their localized surface plasmon resonance (LSPR) effect which is same as any conventional plasmonic biosensor. But the non-edge breathing modes of nanostar antenna will be helpful to determine the mass of adsorbed analyte based on the cantilever principle. The mass estimation (having the information about the polarizability and the size) of the markers is very crucial because it would provide the information about the number of amino acids present in that molecule which will help for better understanding of its molecular structure and thus will be useful for designing its anti-agent. This efficient acousto-plasmonic nanoantenna therefore could become a key element at a point of care. To go one step forward in this research area, Fano-lineshape based sensing was thought to be a promising idea. Here the reported Fano line-shape arises from the coupling of the gold nanorods dipped in thermo-responsive polymer matrix and a silver thin film. The Fano system was seen to respond to both the change in external temperature and the refractive index. This kind of Fano system will be helpful for the label-free detection of the foreign protein molecule with high efficiency and also for identifying the marker’s thermodynamic state and reactions of the molecule which is crucial for protein engineering. All these constitute the base of the discussion of part I of the thesis which is about the light harvesting plasmonic nanoantennas. In the 2nd part of the thesis, AZO metasurfaces and their optical activities are discussed. Aluminium doped Zinc Oxide (AZO) is a low-loss material and popular as an alternate plasmonic material. The highly ordered AZO nanotubes array system has seen to have gas sensing capability. The reported H2 gas detection within a very short time can make this system suitable for industrial application. The detection of H2 gas of lower concentration with the help of these nanostructures is also useful to detect the presence of bacteria by tasting their exhaled H2 gas. On the other hand, the AZO solid nanopillars arrays are seen to have generalized Brewster angle phenomena which can be useful for many applications including the optical switching. Lastly, some additional works have been described in a brief way. In this section, photonic nanojet related theoretical study, asymmetric sound transmission behaviour shown in 3D printed acoustics metamaterials, focal-length tunability of metalens and plasmon assisted cancer therapy has been reported. As per my belief and understanding, all these studies reported in this thesis will enrich the related research areas.Item Laser action in liquid crystals: from random to periodic syatems(2007) Ferjani, Sameh; Strangi, Giuseppe; Versace, CarloItem Turbulence and Stochastic Processes in Nematic Liquid Crystals(2010-10-22) Carbone, Francesco; Strangi, Giuseppe; Versace, CarloIn this work we studied the electrohydrodynamics instabilities (EHD) from a different point of view. We used the traditional tools, belonging to the traditional fluid turbulence framework, to the world of liquid crystals. This tools in addition, for the first time, a 3D scanning of the NLC sample driven in these turbulent regimes, give us some interesting results. As an example a fragmentation of the large scale structures (Williams Domains) whit characteristics similar to the Richardson cascade. We also studied, for the first time, the intensity fluctuation at different depth z inside the sample, and we found a strong non gaussianity in the probability density function of this fluctuation. Further information has been obtained by by studying the decorrelation processes in EHD. We found a local transition between two different regimes: the classical Kolomokorov K41 law in the y direction, and a random sweeping decorrelation in the opposite x direction. Finally we study the weak localization of light obtained during the EHD. We found a drastic reduction in the scattering mean free path `? and a strong enhancement of the backscattering cone.