Dipartimento di Biologia, Ecologia e Scienze della Terra - Tesi di dottorato
Permanent URI for this collectionhttp://localhost:4000/handle/10955/34
Questa collezione raccoglie le Tesi di Dottorato afferenti al Dipartimento Dipartimento di Biologia, Ecologia e Scienze della Terra dell'Università della Calabria.
Browse
23 results
Search Results
Item <> elongator complex in plant: a study of its molecular networks(2014-11-29) Gagliardi, Olimpia; Canonaco, Marcello; Bitonti, Maria Beatrice; Van Lijsebettens, MiekeThe Elongator complex is a histone acetyltransferase complex associated with RNAPII to facilitate transcript elongation. It’s composed of six proteins (ELP1-6). ELP1-3 form the Elongator core subcomplex, while ELP4-6 form the accessory subcomplex. Elongator complex, firstly identified in yeast, was later isolated from animals and plants and all its six subunits are evolutionarily conserved. The Elongator activity is conferred by ELP3 that targets specifically histons H3 (lysine-14) and H4 (lysine-12) by acetylating histone in order to facilitate the RNAPII progresses through the nucleosome. In yeast, mutations in Elongator subunits induce delay in growth due to a slowly adaptation to changing environmental conditions. In human, mutations in Elongator components affect neuronal development and this leads to neuronal disease. Whereas, in plant Elongator stimulates plant growth acting a positive regulator of cell proliferation. At the phenotypic level, Elongator mutants, called elongata, are known for narrow leaves and short root. In the present work, by using the model plant Arabidopsis thaliana, we investigated some aspects of molecular networks underlying Elongator activity and its interaction with environmental factors, mainly focusing on light conditions. Based on previous unpublished data obtained through TAP analysis, in the first period of PhD project we focused the attention on the functional study of Sec31 gene encoding a protein involved in cell secretory pathway, identified as a putative direct interactor of Elongator complex. To add information on this interaction we analyzed phenotypic and developmental characteristics of sec31 mutants to compare with elo3-6 mutant. The histological expression pattern of Sec31 and ELO3 transcripts in wild type seedlings was also investigated, through multiprobe in situ hybridization, to compare organ/tissue specific expression domains. The obtained results showed that expression pattern of the two genes is quite similar while sec31 mutants do not resemble elo3-6 phenotypes. Moreover further TAP experiments and in silico analysis of protein/protein interaction did not confirm previous data, thus excluding a direct interaction between ELO3 and Sec31. However, expression analysis in sec31 mutants of some Elongator-related genes, performed by qRT-PCR, showed that Sec31 and ELO3 share common downstream target genes and both seem play a role in auxin pathway. Future trascriptomic analyses on auxin mutants on one side, and the identification of possible interactors/players of both genes on the other side, could be useful to deepen if the molecular circuits, by which Elongator complex and the secretory machinery act on auxin pathway, show some cross-talk or they work in an independent manner. A further aspect of Elongantor molecular network that we investigated deals with role of Elongator in the skoto/photomorphogenesis pathways. In particular we investigated the elo3-6 mutant in darkness and under light condition (red, far-red and blue light) through microarray and RNA-seq approaches. Gene ontology categories over representative in elo3-6 seedlins, identified by BINGO analysis, allowed us to discover the putative targets of Elongator both in darkness and in light, and to understand the position of whole Elongator complex along either pathways. The results suggested that Elongator complex takes part in the skotomorphogenesis and photomorphogenesis and is dependent on photoreceptors PHYA and PHYB. Microarray, RNA-seq, qRT-PCR and ChIP- qPCR analyses displayed that Elongator regulates transcription of some genes both in light and in darkness. In the specific, results displayed that Elongator complex participates in the skoto/photomorphogenic pathways by binding target genes such as HYH and LHY in light and darkness condition, respectively. Whereas it can regulate the activity of other putative targets such as Pifs gene (PIF4) in darkness and HY5 under light condition.Item Studio dei meccanismi della metallotolleranza nell'organismo modello scenedesmus acutus (Chlorophyta - alghe verdi)(2014-11-29) Cozza, Davide; Canonaco, Marcello; Cozza, RadianaItem Evolutive significance of hybridization in Mediterranean deceptive orchids(2012-11-27) Luca, Alessia; Musacchio, Aldo; Pellegrino, GiuseppeUniversità della CalabriaItem Genetic diversity assessment in Pinus laricio Poiret populations using microsatellites analysis and inferences on population hystory(2012-12-07) Bonavita,; Musacchio, Aldo; Regina, Teresa M. R.; Bernardini, VincenzoForests are complex and dynamic ecosystems characterized by trees with remarkable longevity and reproductive forms, particularly, cross-pollination which tend to increase their degree of genetic diversity. If on the one hand, cross-pollination between different individuals continuously shuffles the genetic material ensuring heterogeneity, on the other hand, an effective pollen and seeds dispersal ensures a reliable gene flow between individuals and, therefore, high levels of intra-specific variability. Therefore, more genetically different individuals are, greater is their ability to adapt to changed environmental conditions. Pinus laricio Poiret, usually considered as the most divergent and genetically original subspecies of European black pine (Pinus nigra Arnold), is the most widespread conifer occurring in Calabria, Sicily (Etna Mount) and Corsica. In Calabria, it grows on the Aspromonte mountain and mainly on the Sila plateau, where laricio pine forests cover more than 40,000 ha and characterize the landscape from 900 m up to 1,700 m above sea level. Thermophilic, xerophilous and heliophilous species, Pinus laricio can reach large sizes and 350 years of age, as documented for the Fallistro's Giants Biogenetical Reserve, within the Sila National Park. To the best of our knowledge, until now no studies have been conducted on the genetic diversity of Pinus laricio forests in their natural range of distribution. Furthermore, an in-depth investigation on the within- and among-population genetic differentiation is greatly needed to preserve Pinus laricio diversity, but also to establishing appropriate strategy of management and conservation of this specie. In this thesis, genetic polymorphism among geographically distant laricio pine natural populations from Sila, Aspromonte, Etna, and Corsica National Parks was detected using chloroplast and nuclear SSR markers. Both types of markers revealed that the higher diversity was found mainly within populations, while there were low levels of differentiation among populations, very likely associated with extensive gene flow and strong anthropogenic influence. However, a geographical discontinuity was identified, clearly indicating genetic subdivision of the investigated laricio pine populations at both inter- and intra-population level. All populations within the Sila area were found differentiated from the rest, particularly the Fallistro population that appeared the most genetically distinct. Results issued from this study shed light on the gene pool and evolutionary history of Pinus laricio populations providing a genetic perspective for exploitation and conservation of this not yet sufficiently explored resources in forestry.Item Identification of Pseudo‐nitzschia (Bacillariophyceae) species using Whole Cell‐Fluorescent In Situ Hybridization (WC-FISH): from cultured sample to field test(2013-12-02) Ruffolo, Ruffolo; Canonaco, Marcello; Cozza, RadianaItem Leaf proteomics of seagrasses under light conditions and salinity(2013-11-29) Piro, Amalia; Mazzuca, Silvia; Bitonti, Maria BeatrceLe fanerogame marine, nel nostro studio limitate alle seagrasses, si sono adattate per occupare vaste estensioni dei fondi litorali e hanno dovuto sviluppare diversi adattamenti per poter vivere completamente sommerse. Le seagrasses non possono crescere in profondità dove non arriva almeno il 10% della luce in superficie, per questo si situano sempre sul piano infralitorale. In acque molto chiare, possono essere presenti fino a 70 m di profondità, però in mari con acque più torbide non superano i 15-20 m. Per tutte queste ragioni, queste formazioni vegetali sommerse rivestono un importante ruolo nella biologia e nella dinamica costiera. Posidonia oceanica è una specie esclusiva del mar Mediterraneo. Mentre Cymodocea nodosa è, dopo Posidonia oceanica, la seconda seagrass del Mediterraneo per estensione delle sue praterie ed è una specie di origine tropicale, attualmente ambientata nel Mediterraneo e nell’Atlantico nordorientale, dal sud del Portogallo fino al Senegal, includendo le isole Canarie. Rispetto a P.oceanica presenta una maggiore tolleranza agli aumenti di salinità. In questo lavoro è stata analizzata l’espressione proteica in Posidonia oceanica e Cymodocea nodosa sottoposte a diversi regimi luminosi e concentrazioni saline. L’analisi ha riguardato specificamente il proteoma foliare e il sub-proteoma del cloroplasto, attraverso l’estrazione delle proteine, separazione elettroforetica, analisi delle sequenze in spettrometria di massa e identificazione proteica con software bioinformatici. L’approccio proteomico così strutturato ha consentito di rilevare proteine differenzialmente espresse in popolazioni naturali adattate a tre diverse profondità. I risultati più evidenti riguardano proteine enzimatiche correlate al sistema fotosintetico PSII che risulta maggiormente espresso nelle praterie a 30 m di profondità alle 13:00, ora di massima disponibilità di luce. Altro dato rilevante è l’aumento dell’espressione degli enzimi del pathways metabolici che portano alla biosintesi di ATP, fotosfosforilazione cloroplastica e fosforilazione ossidativa mitocondriale. Sempre alla profondità di 30 m e alle 13:00, risultano overespressi gli enzimi del ciclo di Calvin-Benson rispetto ai livelli riscontrati nelle altre due profondità alla stesso tempo. Risultano invece poco espressi gli enzimi correlati alla glicolisi che raggiungono livelli molto elevati di espressione nel controllo, ossia alla profondità di 30 m nelle prime ore del mattino; anche le proteine correlate al PSI sono poco espresse in funzione delle profondità e raggiungono il minimo della loro espressione a 30 m nelle ore di massima illuminazione (13:00). Dato interessante e in apparente contraddizione con i dati di espressione dei gruppi funzionali correlati al processo fotosintetico, e la diminuzione dei livelli di espressione degli enzimi della via biosintetica delle clorofilla (a, b) alla profondità di 30 m associabili alla down-regolazione del fotosistema PSI. L’analisi delle proteine organellari ha consentito di creare un primo catalogo di proteine cloroplastiche di P. oceanica attraverso analisi dell’omologia di sequenza di proteine cloroplastiche di Arabidopsis e la loro localizzazione nei tre comparti sub-organellari (AT_CHLORO DATABASE). I cloroplasti intatti di P. oceanica sono stati ottenuti in accordo con quanto riportato in Rolland et al. 2003. Sono state identificate 74 proteine a cui è stata assegnata una diversa localizzazione e un numero di accesso corrispondente al database utilizzato. Il maggior numero di proteine identificate sono localizzate nei tilacoidi e nello stroma, mentre un numero minore di proteine sono localizzate nell’envelope. Inoltre l’8% delle proteine non hanno una esatta localizzazione nei compartimenti del cloroplasto. Infine è stato analizzato il proteoma foliare di Cymodocea nodosa esposta a stress salino in condizioni controllate in mesocosmo, dove la parziale inibizione della fotosintesi, mediante la down-regulation delle proteine e degli enzimi sia del PSII che del PSI, e la ridotta attività respiratoria ottenuta dall’analisi proteomica permette alle piante di adattarsi a questa grave condizione di stress, ma presumibilmente con vitalità ridotta, dal momento che alcune delle risorse interne necessarie per la crescita e il mantenimento della biomassa devono essere riassegnati per far fronte allo stress metabolico. Nei trattamenti ipersalini sia a breve che a lungo termine troviamo gravi alterazioni dei metabolismi primari. Inoltre, i risultati di una bassa espressione della RuBisCo nei campioni ipersalini, in accordo con Beer et al . ( 1980), suggerisce che in condizioni di stress salino il bilancio del carbonio tende a favorire una maggiore produzione di carbonio inorganico ( Ci). Si verifica, poi, un aumento degli enzimi della glicolisi per controbilanciare la richiesta di energia e quindi produrre più molecole di ATP. Anche il metabolismo vacuolare è stato influenzato dal trattamento ipersalino , infatti, l’over-espressione dell’H(+)-PPasi suggerisce che i vacuoli sono coinvolti nel sequestro del Na+. Questo potrebbe essere quindi il meccanismo che consente a C. nodosa di sopravvivere a condizioni di salinità estremamente variabili e definirla così una specie tolleranteItem Identification of a feral olive dehydrin gene and its development as a tool for drought tolerance in Arabidopsis thaliana(2013-11-28) Muto, Antonella; Bitonti, Maria Beatrice; Chiappetta, Adriana; Van Lijsebettens, MiekeStress abiotici, quali deficit idrico e salinizzazione del suolo influenzano negativamente la crescita delle piante e la produttività delle colture (Liu et al., 2004; Wu et al., 2007). In campo vegetale, tra le strategie sperimentali messe in atto per incrementare la tolleranza a varie tipologie di stress tra cui siccità, salinità e congelamento, l’approccio più efficace è risultato essere l’introduzione, in piante di interesse, di geni codificanti per fattori di trascrizione stress-inducibili o, più in generale, di geni corrrelati alla risposta agli stress, di genotipi vegetali naturalmente stress-tolleranti (Beck et al, 2007). In tale contesto, Olea europaea L. subsp. europaea var. sylvestris, nota comunemente come oleastro, una pianta tipica ed ampiamente diffusa nel bacino del Mediterraneo, presenta molti tratti quali la resistenza al vento ed alla siccità, la capacità di recuperare dopo un incendio, che da una parte potrebbero essere traslati a specie vegetali di importanza agronoma ed economica rilevante, dall’altra ne fanno un candidato eccellente per le pratiche di rimboschimento e della gestione delle zone erose della Macchia Mediterranea (Mulas et Deidda, 1998) . Tra i meccanismi messi in atto dalle piante per fronteggiare stress vari tra cui quello idrico ed osmotico rientra la sintesi di una classe di proteine note come deidrine. Un membro della famiglia genica delle deidrine, denominato OesDHN è stato precedentemente identificato da una libreria a cDNA ottenuta da foglie di piante di Olea europaea subsp. europeae var. sylvestris ed interessantemente i suoi livelli di espressione sono risultati essere up-regolati in piante di oleastro esposte a condizioni di stress idrico e da freddo (Bruno et al., 2010). Le analisi volte a definirne l’omologia di sequenza e l’origine filogenetica hanno dimostrato che OesDHN codifica per una deidrina acida (pI 5.14) costituita da 211 aminoacidi di 23,846 kDa. OesDHN presenta due segmenti K ricchi in lisina ed un segmento S, ricco in serina, caratteristiche tipiche di una deidrina di tipo SK2. Inoltre, l’analisi Southern blot, condotta al fine di analizzare l’organizzazione genomica, ha dimostra che OesDHN è presente in duplice copia nel genoma aploide di oleastro. Al fine di chiarire il ruolo di OesDHN nei meccanismi messi in atto dalle piante in risposta allo stress idrico, abbiamo generato piante transgeniche di Arabidopsis thaliana overesprimenti il gene OesDHN. I risultati ottenuti hanno messo in evidenza che, in condizioni di stress osmotico medio, indotto sperimentalmente aggiungendo una concentrazione 25mM di mannitolo nel mezzo di coltura, l’overespressione del gene eterologo, incrementa la tolleranza delle piante a questa specifica condizione di stress. A conferma di tali risultati, l’analisi in silico condotta ha messo in evidenza la presenza di putativi elementi regolatori stress-inducibili di tipo ABRE e MYB, localizzati nella regione del promotore di OesDHN. Infine, l’analisi confocale sulle linee transgeniche 35S::OesDHN:GFP e 35S::GFP:OesDHN di Arabidopsis thaliana, ha messo in evidenza che la proteina OesDHN è localizzata principalmente a livello nucleare. Nel loro insieme i risultati ottenuti sulla pianta modello Arabidopsis thaliana hanno permesso di chiarire alcuni degli aspetti molecolari chiamati in causa nella tolleranza a svariate condizioni di stress, nelle piante. La prospettiva a lunga scadenza della ricerca affrontata è quella di ampliare le conoscenze utili a definire possibili strategie per incrementare caratteri di tolleranza/resistenza in importanti specie coltivate e non.Item Aspetti citotassonomici, embriologici e morfologici del genere taraxacum Wigg. (Asteraceae) in Calabria(2006) Aquaro, Gabriella; Innocenti, Anna Maria; Cesca, GiulianoItem Analisi dell'isolamento riproduttivo nelle orchidee mediterranee(2014-03-20) Scopece, Giovanni; Innocenti, Anna Maria; Musacchio, AldoItem The elongator complex:its function in leaf development and germination(2014-03-19) Falcone, Andrea Malfitano; Innocenti, Anna Maria; Musacchio, Aldo
- «
- 1 (current)
- 2
- 3
- »