Dipartimento di Ingegneria dell'Ambiente - Tesi di Dottorato

Permanent URI for this collectionhttp://localhost:4000/handle/10955/101

Questa collezione raccoglie le Tesi di Dottorato afferenti al Dipartimento di Ingegneria per l'Ambiente e il Territorio e Ingegneria Chimica dell'Università della Calabria.

Browse

Search Results

Now showing 1 - 10 of 24
  • Item
    Preparation of mixed matrix membranes for water treatment
    (2017-07-11) Grosso, Valentina; Panano, Pietro; Drioli, Enrico; Fontananova, Enrica; Di Profio, Gianluca; Curcio, Efrem; Gabriele, Bartolo
    The treatment of wastewater and its reuse is a very important topic in industrial processes. This because not only avoids drawing on natural resources, but also enables a significant reduction in the amount of wastewater discharged into the natural environment. Wastewater can also be used for various purposes where drinking water quality is not mandatory, including agricultural irrigation, the cleaning of industrial equipment, the watering of green spaces, and street maintenance, etc. In fact, the water reuse has become essential in all areas in the world that suffer from water shortages [1]. Different methods are used for wastewater treatment. These processes can be to divide in: primary, secondary and tertiary treatment. Primary treatment (screening, filtration, centrifugation, sedimentation, coagulation, gravity and flotation method) includes preliminary purification processes of a physical and chemical nature while secondary treatment deals with the biological treatment of wastewater. In tertiary treatment process wastewater is converted into good quality water that can be used for different types of purpose, i.e. drinking, industrial, medicinal etc. supplies [2]. The complexity of industrial processes, the variety of pollutants and the limitation of a single operation, has led to the need for more complex processes and especially to a combination of processes. Membranes technologies falls on the tertiary water treatment technologies and are actually the most effective separation processes and they are still in rapid development creating new prospects of their applications in clean technologies [3]. The utilization of membrane operations as hybrid systems, i.e. in combination with other conventional techniques or integrated with different membrane operations is considered the way forward for more rationale applications [4]. The possibilities of redesigning various industrial cycles by combining various membrane operations have been studies and in some case realized with a low environmental impact and a low energy consumption [5]. Different processes can be used in various steps of a hybrid system, depending from the size of the pollutants to be removed. Microfiltration (MF) and ultrafiltration (UF) membrane processes, can be used as pre-treatment, while nanofiltration (NF) and reverse osmosis (RO) can used in the final step of the integrated system to remove particles with smaller dimensions (Chapter 1) The membranes have different morphological characteristics that affect their performance. The study of all the conditions which modulate these characteristics is a crucial point in the choice of membranes to be used in the various separation processes. Therefore, it is important to investigate about new materials and new types of membranes, like as mixed matrix membrane (MMM). MMM is a heterogeneous membrane consisting of inorganic fillers embedded in a polymeric matrix and can be made into flat sheets and hollow-fiber. Nevertheless, the selection of membrane configuration is greatly dependent on the application and therefore the production of MMMs in useful configuration is undoubtedly a crucial point in membrane development [6]. Also, the selection of inorganic fillers depends of desired membrane performance and their use. More attention was focus on the interesting characteristic of carbonanotubes (CNTs) (chapter 2). CNTs themselves have remarkable electrical, thermal, and mechanical properties. These nanotubes have the structure of a rolled-up graphene sheet with smaller diameter. Multiwalled carbonanotube (MWCNTs) were used to prepare MMMs for wastewater treatment. Different compounds, as additives in the polymeric membranes were used in high percentage; in the case of MWCNTs was observed as a low amount can change the membrane morphologies, mechanical and transport properties. A crucial point was the choice of membrane materials. Two type, hydrophilic poly(imide) (PI) and hydrophobic poly(vinylidenfluoride) (PVDF) were choose for membrane materials to produce MMMs. Another important point in this study was the use of functionalized MWCNTs that provide a good dispersion in the casting solution first, and in the polymeric matrix after phase separation. The main limitation in the use of CNTs is their poor dispersion in the main solvents used for the preparation of membranes. The functionalization has been proven an efficient method to overcome this limitation improving the compatibility with the polymer matrix. The presence of polar groups on the carbon nanotubes can reduces their tendency to aggregate by van der Waals interactions, while forming hydrogen bonds and electron donor/acceptor interactions with the polymer. Low percentages of CNTs were used for the preparation of membranes. These percentages were sufficient to improve better performance to modified membranes. PI was select as polymeric materials because combine easy processability in the form of membranes, with a high chemical and thermal stability, over a wide range of operative conditions. Three different PI polymers were used to prepared porous asymmetric membrane by non-solvent induced phase separation (NIPS): a homopolymer (Matrimid) and two co-polymers (Lenzing P84 and Torlon). The effect of membrane preparation conditions on the membrane morphology and transport properties, were investigate. Moreover, mixed matrix based on co-polyimide P84 and functionalized multiwalled carbon nanotubes (oxidized and aminated MWCNTs) were prepared. The different polymeric membranes were compared in the rejection of organic dyes, as model of organic pollutant present in wastewater (chapter 3). To investigate about the influence of functional groups on the MWCNTs for their interaction with polymeric matrix, three different type of functionalized MWCNTs (oxidized, amined and aminated) were dispersed also in polymeric hydrophobic PVDF membranes. PVDF was selected as polymeric materials of its outstanding properties: excellent chemical resistance and hydrolytic stability; high mechanical strength and stability over a broad pH range; polymorphism (main crystalline phases are: α, β, γ, δ and ε) [7]. The aim was to tailor the interactions with the polymeric matrix in order to realize high performing composite film with improved performance. Bovine serum albumin (BSA) protein was select as compound to evaluate the membrane performance. In particular, the antifouling properties and the permeation flux of mixed matrix membranes, were evaluate as well as thermal and structural and mechanical properties (chapter 4).
  • Item
    Renewable energy generation and hydrogen production from concentrated brine by reverse eectrodialysis
    (2016-02-26) Tufa, Ramato Ashu; Drioli, Enrico; Curcio, Efrem; Molinari, Raffaele
    Salinity Gradient Power-Reverse Electrodialysis (SGP-RE) is among the emerging membrane-based technologies for renewable energy generation. In RE, cation exchange membranes (CEM) and anion exchange membranes (AEMs) are alternatively aligned to create a high concentration compartment (HCC) and low concentration compartment (LCC). When the compartments are feed by a low concentration and high concentration solution, salinity gradient is created which initiates the diffusive flux of ions towards electrodes. Electricity is generated by the redox process occurring at the electrodes. The total voltage generated (open circuit voltage, OCV) is proportional to the number of membrane pairs (cells). One of the challenges pertaining to the Ohmic losses when using very low concentration salt solutions like river water can be reduced by working with highly concentrated brines (Chapter 1). Investigation of the performance of RE under realistic high-salinity conditions is crucial for implementation of RE under natural condition. The most abundant ions in natural waters involve sodium, magnesium, calcium, chloride, sulfate, and bicarbonate. Under this condition, the presence of multivalent ions, in particular Mg2+, have a lowering effect on OCV and hence a reduction of power density. This could be attributed to the enhancement of cell resistance in the presence Mg2+ ion resulting in an increase of membrane resistance. The SGP potential and comparable decrease in power density of RE operated with solutions mimicking real brackish water and exhaust brine from a solar pond depicts the pretreatment requirement in RE for better performance (Chapter 2). Seawater reverse osmosis (SWRO) is the most widespread technology for fresh water production in many parts of the world. Extensive research have been carried out to tackle the technological challenges coming along with the expansion of SWRO practice with time, specifically the reduction of energy consumption. The integrated application RE in desalination technologies in the logic of process intensification is an interesting approach towards low energy desalination. Simultaneous production of energy and desalted water is possible by hybrid application of Direct Contact Membrane Distillation (DCMD) and RE units operated on the retentate stream from a SWRO desalination plant. The use of concentrated brine for energy recovery also leads to Near-Zero Liquid Discharge from desalination systems. This avoids the adverse ecological effect of discharging hypersaline solution into natural water bodies. Thus, integrated application of RE with RO and DCMD for simultaneous water and energy production represent an innovative approach towards low energy desalination and Near-Zero Liquid Discharge paradigm (Chapter 3). The possibilitity to exploit the chemical potential of sulfate wastes by SGP-RE can be a promising alternative renewable energy source. The key challenge remains the property of membrane in sulphate solution. Although the trends in the variation of desirable membrane properties (high permselectivity and low resistance) in Na2SO4 test solutions with varying operating conditions remain similar with that of NaCl test solution, their performance is comparatively low. This has a negative impact on the performance of the RE mainly on the obtained OCV and power density. Hence, design of well optimized and high performance membranes is required for practical applicability of SGP-RE for renewable energy generation from sulfate bearing waste resources (Chapter 4). Ion exchanging membranes (IEMs) are key components in RE. Low resistance and highly permeable ion exchange membranes are required for optimal performance of RE system. For practical applications of RE under real condition, IEMs which are less susceptible to fouling are required. There is a potential risk of fouling (for example, scaling of sparingly soluble salts) of IEM operated in concentrated brine. Operations under real conditions also require feed quality control, as the presence of multivalent ions negatively impact RE performance. The variation in Total Organic Carbon (TOC) and Total Hardness (TH) of feed samples may alter the membranes physico-chemical and electrochemical properties. In addition, long term stability of IEMs in concentrated brine govern their life time. Investigation on fouling and stability of IEMS, specifically in concentrated brines, would be essential to set a clear pretreatment requirement for the performance of RE under natural conditions (Chapter 5). For techno-economic optimization and feasibility study of RE, performance of large scale (industrial scale) systems need to be investigated under varying experimental conditions. Comparative assessment of operating conditions like feed concentration, flow velocity and temperature in a small scale RE and large scale RE systems is essential. In general, the trends in OCV and power density for industrial scale operations remain more or less similar to that of membrane based water and energy technologies (based on the difficulties to meet sustainability criteria) helps in identification of technological gaps and strategic solution (Chapter 9). Future research on RE will be focusing on optimal design and development of high performance membrane in hyper-saline solution. This will extend from design of highly permeable and low resistance ion exchange membranes to the development of fouling resistant and stable membrane, particularly in concentrated brine. The relationship between physicochemical membrane properties and fouling tendency under hyper-saline environment need to be assessed. The effect of other multivalent ions in seawater like SO4 2- and Ca2+ on the performance of RE under extreme operating conditions should be clearly outlined. For integrated applications in desalination technologies, for example with DCMD, the risk of scaling and fouling for practical applications should be investigated deeply. Better membranes and module designs are required for membrane desalination systems in general. For efficient application of RE in hydrogen technologies, specifically with APE water electrolysis, development of highly conductive and durable anion selective membranes as well as highly active and stable catalysts in corrosive alkaline environment is of future research interest. Above all, well established technoeconomic evaluations of a standalone and integrated applications of RE is essential in order to evaluate the feasibility of scale-up and commercialization of the technology as a renewable energy source (Chapter 10).
  • Item
    Functionalized polymeric membranes for development of biohybrid systems
    (2016-02-26) Vitola, Giuseppe; Giorno, Lidietta; Drioli, Enrico; Molinari, Raffaele
    Le proprietà di superficie di una membrana sono di grande importanza per la sua funzione. Mediante tecniche di funzionalizzazione chimica è possibile ottenere membrane con gruppi funzionali in grado di adempiere nuove e diverse funzioni che rendono la membrana funzionalizzata un dispositivo in grado di svolgere funzioni multiple trovando applicazione in vari impieghi. Le membrane funzionalizzate, infatti, trovano impiego nei processi di separazione, nei settori che richiedono l’uso di membrane biocompatibili, e nell’immobilizzazione di biomolecole che a sua volta trova applicazione nella preparazione di biosensori e bioreattori a membrana. Questi ultimi sono particolarmente interessanti poiché sfruttano l’alta superficie specifica della membrana e permettono di integrare il processo di separazione con quello catalitico. Il presente lavoro di tesi ha riguardato lo sviluppo di membrane polimeriche biofunzionalizzate per la decontaminazione di acque da sostanze tossiche quali i pesticidi organofosfati. Il lavoro è stato focalizzato sullo studio di diverse tecniche per l’ingegnerizzazione di membrane polimeriche aventi differenti caratteristiche chimico-fisiche. L’impatto dei diversi tipi di funzionalizzazione è stato valutato considerando il grado di legame e le proprietà catalitiche di biomolecole immobilizzate sulle membrane funzionalizzate. I polimeri utilizzati per l’immobilizzazione delle biomolecole sono stati il fluoruro di polivinilidene (PVDF) e il polietersulfone (PES), materiali ampiamente usati in sistemi di filtrazione. La proteina sieroalbumina bovina (BSA) e l’enzima lipasi da candida rugosa (LCR) sono state selezionate quali biomolecole modello per lo studio della capacità di legame e le proprietà catalitiche delle membrane ingegnerizzate. Le condizioni ottimali di funzionalizzazione e immobilizzazione sono state poi impiegate per lo sviluppo di sistemi bioibridi contenenti l’enzima fosfotriesterasi (PTE), un enzima in grado di operare la detossificazione di organofosfati. Al fine di migliorare le performance degli enzimi immobilizzati sul PVDF è stato sviluppato un nuovo approccio di ingegnerizzazione. Esso ha riguardato la sintesi di nanoparticelle colloidali a base di poliacrilammide e il loro utilizzo, dopo opportuna funzionalizzazione, come vettori per l’immobilizzazione covalente di enzimi sul PVDF. La nuova strategia di immobilizzazione ha permesso di mantenere il microambiente idrofilo a livello dell’enzima immobilizzato migliorandone di conseguenza le proprietà catalitiche. La strategia allo stesso tempo ha consentito di preservare l’idrofobicità della membrana. Tale proprietà è necessaria per lo sviluppo di sistemi operanti nella decontaminazione di aria. I risultati hanno mostrato che l’enzima fosfotriesterasi immobilizzato sul PES mantiene un’attività residua maggiore rispetto a quella dell’enzima immobilizzato sul PVDF. La membrana biocatalitica in PES è risultata idonea per la decontaminazione di organofosfati in fare acquosa.
  • Item
    Membrane crystallization for recovery of valuable compounds from waste streams
    (2016-02-26) Quist-Jensen, Cejna Anna; Drioli, Enrico; Macedonio, Francesca; Molinari, Raffaele
    Sustainable development and Process intensification strategy are guidelines for industrial processes in perspective. It is becoming more and more common that industry wants to fully exploit their resources due to environmental regulations, economic gain, sustainable standpoint, etc. In this perspective, waste streams have to be turned into resources in the most environmental friendly, economic and sustainable way. Membrane Engineering is already a key-figure to realize this objective. Novel membrane technologies such as membrane distillation (MD), membrane crystallization (MCr), pressure retarded osmosis (PRO), reverse electrodialysis (RED) and forward osmosis (FO), are evolving and are being suggested for a better exploitation of waste streams. This Ph.D. study focusses, particular, on Membrane crystallization (MCr), which is a novel technology for simultaneously production of water and minerals. It has several advantages with respect to conventional crystallizers in terms of purity, controlled kinetics and crystal morphology. Moreover, MCr is able to treat high concentration solutions, which are challenging for other traditional membrane operations. The current Ph.D. work emphasizes on various aspects of membrane crystallization for approaching zero-liquid discharge in industrial processes. Improved membranes, specifically developed for MCr applications, have to be manufactured. In this study, preliminary suggestions on membrane features are given for the requirements in MCr. Lab-made PVDF membranes with different characteristics have been tested and evaluated for their performance in MCr. This study, suggests that membranes with symmetric sponge layer structure and low thickness are favorable. Membrane of asymmetric structure with many macrovoids seems more pronounced to suffer from wetting. Moreover, it has been shown that, membrane crystallization is able to treat several kinds of feed solutions including RO brine, produced water and wastewater containing high amounts of sodium sulfate. The recovered crystals exhibit high purity, good size distribution and controlled growth. Na2SO4 can be recovered as different polymorphs and in this study it has been crystallized in the anhydrous form (Thenardite). Moreover, the process has shown excellent stability in terms of transmembrane flux and maintenance of hydrophobicity of the membrane. In some cases the treatment has been continued for more than 90 hours by only slight cleaning with distillate water. Membrane crystallization, in the direct-contact membrane distillation configuration, can normally treat solutions with very high concentrations. However, its limitations in the recovery of lithium from single salt solutions have been highlighted in this study. Vapor pressure, due to increase in concentration, is reduced significant, that it is not possible to reach LiCl saturation by this configuration. Likewise, combined direct-contact and osmotic distillation configuration have not been able to increase the driving force enough in order to exceed saturation. Instead vacuum membrane distillation has been introduced to eliminate the osmotic phenomena. This configuration has been able to recover LiCl in two different polymorph structures depending on the utilized operative conditions. Furthermore, integrated membrane system, including membrane crystallization, has shown excellent capability to treat orange juice. The quality of the juice has been maintained through ultrafiltration, membrane distillation and membrane crystallization treatment. In this study, the MD/MCr feed temperature is kept below 30 °C causing a relatively low flux. However, it has still been possible to reach from a concentration of 9 °brix to 65 °brix using MD/MCr. The advantages of MD/MCr with respect to isothermal osmotic membrane distillation configuration, is the elimination of the reconcentration stages of the draw solution. All the carried out case studies show that MD/MCr is able to reduce the volume of the waste stream significantly. The obtained results might be used as guidelines for practical application. Moreover, the low temperatures and atmospheric pressures utilized, makes it possible in real industrial processes to use waste or low-grade heat. Unlike other processes, MCr is able to produce two high quality products (i.e. water and salts) and will therefore not produce any additional waste. Hereby, the extended treatment by means of MCr will only positively influence the overall “sustainability” of the entire industrial process.
  • Item
    Membrane emulsification for the development of particulate systems for drug encapsulation
    (2014-11-11) Imbrogno, Alessandra; Giorno, Lidietta; Drioli, Enrico; Molinari, Raffaele
    Il micro-incapsulamento è una tecnica ampiamente utilizzata per incapsulare sostanze nutraceutiche, farmaci, proteine, cellule ecc. Oggigiorno, la ricerca nel campo farmaceutico viene sempre più indirizzata allo sviluppo di forme farmaceutiche a rilascio modificato (ad esempio emulsioni multiple, sfere e capsule mono/ polinucleate) in grado di migliorare la biodisponibilità di principi attivi scarsamente solubili. La maggior parte delle metodologie utilizzate per la preparazione di particelle micro e nano-strutturate prevedono un processo iniziale di emulsificazione. In questo caso, il controllo della dimensione e dell’uniformità delle gocce è di fondamentale importanza per produrre particelle solide di dimensione controllata, da cui dipende la via di somministrazione, la distribuzione nei tessuti e l’interazione con le cellule. Negli ultimi 25 anni, enormi progressi sono stati realizzati nella preparazione di emulsioni con una dimensione controllata delle gocce grazie a un sempre più vasto utilizzo dell’emulsificazione a membrana, un processo vantaggioso rispetto alle tecniche convenzionali in termini di semplicità operativa, basso consumo energetico, alta riproducibilità e facile scale-up. L’aspetto innovativo di questo processo è la produzione delle gocce di emulsione singolarmente, ottenuta mediante permeazione della fase dispersa attraverso i pori della membrana, mentre il distacco della goccia avviene all’uscita del poro per effetto di uno sforzo di taglio esercitato dal fluire della fase continua. Un grande potenziale dell’emulsificazione a membrana per la preparazione di formulazioni farmaceutiche è la possibilità di combinare le proprietà chimiche della formulazione con le proprietà strutturali della particella (quali dimensione e dispersione) in modo da realizzare prodotti con caratteristiche funzionali idonee a specifiche applicazioni. Nella realizzazione di sistemi micro e nano-strutturati per l’incapsulamento di molecole bioattive, le proprietà chimico-fisiche del materiale sono anche di fondamentale importanza. Tra i materiali organici, i polimeri biodegradabili (in particolare il poli-caprolattone e il copolimero dell’acido lattico e glicolico) sono quelli di maggiore impiego in quanto offrono la possibilità di realizzare particelle che, una volta introdotte nell’organismo, vengono degradate in sottoprodotti metabolizzati dalle cellule. Questa proprietà conferisce a questi materiali un’eccellente biocompatibilità e il rilascio del farmaco incapsulato nelle particelle può essere modulato dalla velocità di degradazione del polimero. Inoltre questi polimeri sono idrofobi e quindi ideali per l’incapsulamento di farmaci insolubili in acqua, una procedura necessaria per poter essere somministrati nella circolazione sanguigna. Nonostante questi polimeri siano ampiamente utilizzati per la preparazione di sistemi micro e nano-strutturati, numerose problematiche sono state riscontrate nel controllo della dimensione e dispersione delle particelle e la loro morfologia. Lo scopo del presente lavoro di tesi è quello di utilizzare l’emulsificazione a membrana per la preparazione di sistemi micro e nano-strutturati utilizzabili per l’incapsulamento di farmaci idrofili e lipofili e realizzati con i polimeri biodegradabili precedentemente menzionati. Dall’analisi dello stato dell’arte sono stati individuati una serie di requisiti importanti per la preparazione di sistemi particellari: i) produrre particelle con dimensione e dispersione controllata utilizzando un processo ad alta produttività; ii) mantenere un basso stress meccanico per preservare l’attività delle sostanze incapsulate; iii) utilizzare un processo che può essere applicato su larga scala a livello industriale. La produzione di particelle altamente uniformi e con dimensione controllata mediante l’utilizzo dell’emulsificazione a membrana è già stato pienamente riportato in letteratura. Tuttavia, la possibilità di poter ottenere una produzione controllata dell’emulsione mantenendo allo stesso tempo un’alta produttività e un basso stress meccanico nell’impianto è tutt’ora oggetto di studio. Sulla base di queste osservazioni, gli avanzamenti proposti dal presente lavoro di tesi sono: • migliorare la produttività e l’efficienza del processo di emulsificazione a membrana mediante: i) l’utilizzo di una membrana con bagnabilità asimmetrica lungo la sezione al fine di mantenere allo stesso tempo una produzione controllata dell’emulsione ad un alto flusso di fase dispersa; ii) l’utilizzo di membrane di tipo “setaccio” in acciaio inox in modo da combinare i vantaggi delle caratteristiche strutturali della membrana setaccio (bassa porosità, basso spessore, pori rettilinei e uniformemente distribuiti) con l'elevata resistenza chimica dell’acciaio inossidabile, che è meno soggetto allo “sporcamento” per interazione con i componenti dell’emulsione; • indagare, inizialmente su piccola scala e poi con processi adatti per la produzione su larga scala, la preparazione di sistemi micro e nano particellari combinando la emulsificazione a membrana con il processo di diffusione del solvente per ottenere un controllo della dimensione e morfologia delle particelle in modo preciso e riproducibile rispetto all’ evaporazione del solvente comunemente utilizzata; • investigare l’utilizzo di processi di emulsificazione a membrana recentemente introdotti per applicazioni su larga scala, quali emulsificazione a membrana con flusso pulsato e invertito della fase continua ed emulsificazione a membrana con movimento torsionale della membrana, per la produzione di particelle micro e nano-strutturate in condizioni di basso stress meccanico e alta produttività del processo.
  • Item
    Evaluation of thermal polarization and membrane characteristics for membrane distillation
    (2014-11-11) Alì, Aamer; Drioli, Enrico; Aimar, Pierre; Bouzek, Karel; Fila, Vlastimil; Molinari, Raffaele
    The current PhD work emphasizes on various aspects of membrane distillation for approaching zero liquid discharge in seawater desalination. In broader sense, two themes have been discussed in detail: (i) correlation between membrane features and their performance in MD (ii) understanding and control of thermal polarization in MD. Introduction and state-of-the-art studies of MD including progress in membrane development, understanding the transport phenomenon, recent developments in module fabrication, fouling and related phenomenon and innovative applications have been discussed in introductory part of the thesis. The effect of operating conditions and dope compositions on membrane characteristics and correlation between membrane features and their performance has been discussed in subsequent section. It has been established that membrane morphology plays a crucial role in performance of the membrane for real applications. Furthermore, it has been demonstrated that the effect of membrane morphology is different for direct contact and vacuum configurations. Theoretical and experimental aspects of thermal polarization in direct contact membrane distillation have also been investigated. Thermal polarization phenomenon in a flat sheet membrane has been studied by using a specifically designed cell. The effect of operating conditions and solution concentration on thermal polarization has been explored experimentally. It has been observed that increased solution concentration favors the thermal polarization due to resulting poor hydrodynamic at the membrane surface and increase in diffusion resistance to the water vapors migrating from bulk feed phase to the membrane surface. Some active and passive techniques to decrease thermal polarization and possible fouling in membrane distillation have also been discussed in the current study. Thermal polarization can be greatly reduced by inducing secondary flows in the fluid flowing inside the fiber. The induction of secondary flows in the current study has been realized by using the fibers twisted in helical and wavy configurations. Due to improvement of thermal polarization coefficient on up and downstream, the undulating fiber geometries provide high flux and superior performance ratio. Application of intermittent and pulsatile flow to control thermal polarization in MD has also been discussed. It has been inferred that these flows have positive impact on performance ratio and volume based enhancement factors without compromising on packing density of the system. The application of MD for treatment of produced water has also been studied. The effect of membrane features on their performance for the treatment of this complex solution has been discussed. The desirable membrane features for successful application of MD for such treatment have been distinguished. It has been inferred that MD possesses the capability to produce a distillate of excellent quality and is an interesting candidate to recover the minerals present in the produced water. The fouling tendency of the membranes with different characteristics towards different types of feed solutions has also been discussed in this study. It has been shown that the porosity enhanced through the introduction of macrovoids in non-solvent induced phase separation technique creates problems related with wetting and pore scaling during practical application of such membranes. The fouling related issues are less severe in the membranes with sponge like microstructure but the overall porosity of such membranes is relatively less. Thus it has been concluded that there should be an optimum between the high throughput and stable performance of the membranes synthesized through phase inversion techniques. Conclusions of the study and future perspectives have been discussed in the last section of the study.
  • Item
    Analysis of membrane reactor integration in hydrogen production process
    (2014-11-11) Mirabelli, Ilaria; Drioli, Enrico; Barbieri, Giuseppe; Molinari, Raffaele
    In the H2 production field, the membrane reactor (MR) technology is considered a promising and interesting technology. In this thesis work the integration in a small scale hydrogen generator of an MR, to carry out the water gas shift reaction (WGS), has been studied. In particular, the effect of MR integration from a systems perspective, i.e. specifically assessing the impact of MR on the whole process, has been investigated. A preliminary design of a pilot scale MR to produced 5 Nm3/h of H2 by reformate stream upgrading has been performed. A CO conversion of 95% and an hydrogen recovery yield of 90% have been fixed as minimum performance target of the WGS-MR. Depending on the system considered to promote the driving force for the permeation, three scenarios have been proposed: base, vacuum and sweep scenario. On the basis of results from a preliminary scenario screening, the required membrane area (ca. 0.179 m2), for vacuum and sweep scenarios, has been estimated by means of an MR modelling and simulation. The results obtained from the pilot scale have been used for the scale-up of the WGS-MR integrated in the 100 Nm3/h hydrogen production unit. The plant for the integrated process (reformer and WGS-MR) has been simulated by using the commercial simulation tool Aspen Plus®. The MR integration, actually, implies a re-design of the process downstream the WGS reactor. Since more than 90% of the produced H2 is directly recovered in the permeate stream, the PSA unit can be removed, leading to a more compact system. For the retentate stream post processing, the possibility to recover the CO2, by means of membrane gas separation technology has been proposed. The results for a two stages membrane separation unit confirmed the technological feasibility of the CO2 capture, achieving the CO2 purity target. Pursuing the logic of process intensification, the comparison with the reference technology (reformer, high temperature shift, PSA) showed as the WGS-MR integrated system results in a more “intensified” process since a higher H2 productivity, a smaller plant and an enhanced exploitation of raw materials are obtained. In addition, since the MR delivers a high-pressure CO2-rich stream, it provides an opportunity for small-scale CO2 capture and thus possible emission reduction. The possibility to extend the spectrum of MR application in reactions of industrial interest, where hydrogen is produced as by-product, has been also studied. In particular, as case study, the direct conversion of n-butane to isobutene has been analysed showing as, from a thermodynamic point of view, better performance (equilibrium conversion up to seven times higher than the one of a traditional reactor) can be obtained.
  • Item
    An insight on pharmaceutical crystallization process by using membrane technology: PVDF-based mixed matrix membranes and PP grafted membranes as new tools for controlling the supersaturation rate and the heterogeneous nucleation mechanism.
    (2014-11-11) Caridi, Antonella; Drioli, Enrico; Di Profio, Gianluca; Molinari, Raffaele
    Questo elaborato finale del progetto di dottorato tratta lo studio del processo di cristallizzazione a membrana finalizzato alla produzione di composti farmaceutici in forma cristallina. Lo studio ha come obiettivo quello di dare una visione globale del processo di cristallizzazione a membrana andando oltre lo stato dell􀍛a􀆌te, bensì p􀆌opo􀅶e􀅶do l􀍛i􀅵ple􀅵e􀅶tazione della tecnica di cristallizzazione a membrana di base. A tal proposito il progetto è stato sviluppato seguendo in due diverse direzioni: da una parte la tecnica di 􀄐􀆌istallizzazio􀅶e a 􀅵e􀅵􀄏􀆌a􀅶a di 􀄏ase ha 􀇀isto l􀍛appli􀄐azio􀅶e ad u􀅶o spe􀄐ifi􀄐o settore dell􀍛i􀅶dust􀆌ia fa􀆌􀅵a􀄐euti􀄐a, dall􀍛alt􀆌a pa􀆌te lo studio è p􀆌oseguito investigando i meccanismi di cristallizzazione indotti dalla stessa membrana e successivamente ha visto una vera e propria progettazione di membrane opportunamente pensate per la cristallizzazione. Du􀅶􀆋ue, il 􀇀alo􀆌e aggiu􀅶to di tale studio 􀄐o􀅶siste 􀅶ell􀍛a􀇀e􀆌e di􀅵ost􀆌ato la possibilità di ampliare il campo di applicazione del processo a membrana, di aver esteso la conoscenza di base dei meccanismi di nucleazione eterogenea sottesi dalla membrana e di aver progettato, prodotto e caratterizzato delle membrane con differenti materiali e strutture appositamente per essere testati nella tecnica di cristallizzazione. In dettaglio, il lavoro presenta uno studio iniziale sul processo di nucleazione eterogenea che parte da particelle libere in soluzione per poi continuare studiando il processo di nucleazione eterogenea sullle membrane stesse. U􀅶a se􀄐o􀅶da sezio􀅶e t􀆌atta l􀍛appli􀄐azio􀅶e del processo a membrana alla cocristallizzazione farmaceutica. Successivamente inizia la parte di disegno e realizzazione di membrane eterogenee sia dal punto di vista chimico che strutturale: membrane fabbricate con tecniche e materiali differenti e membrane commerciali che sono state opportunamente funzionalizzate. Infine il lavoro si conclude con i tests di cristallizzazione condotti su tali membrane.
  • Item
    Preparation of Organic Solvent Resistant Polymeric Membranes for Applications in Non-aqueous Systems
    (2011-11-08) Drioli, Enrico; Molinari, Raffaele; Woo Lee, Eun
    Operazioni a membrana sono oggi usate in numerosi processi di separazione e il numero di applicazioni è in rapida crescita anche grazie alla necessità di sviluppare nuovi processi sempre più eco-sostenibili. Le operazioni a membrana sono infatti caratterizzate da una più elevata efficienza energetica e minore impatto ambientale rispetto ai processi tradizionali di separazione. In particolare, è evidente un crescente interesse sia accademico che industriale verso processi di separazione a membrana in fase liquida non acquosa. Tuttavia i meccanismi di trasporto del soluto attraverso membrane polimeriche in ambiente organico, sono molto più complicati che in fase acquosa a causa delle forti interazioni fisiche e chimiche tra membrana, soluto e solvente. Nonostante i meccanismi di trasporto non siano stati completamente chiariti, sono attualmente disponibili membrane commerciali per nanofiltrazione in solventi organici (OSN). Questo lavoro ha avuto come obiettivo la preparazione e caratterizzazione di membrane polimeriche da impiegare in separazioni in solventi organici. Sono state preparate membrane polimeriche a base di polidimetilsilossano (PDMS) e un co-polimero della polimmide (P84, PI). Al fine di controllare la dimensione e distribuzione dei pori, è stato investigato l’effetto dei diversi parametri di preparazione e i dettagli sperimentali sono forniti nei capitoli seguenti Nel Capitolo 1 è presentata una introduzione generale sulle membrane e i processi a membrana. Nel Capitolo 2 è presentata una overview sullo stato dell’arte delle membrane polimeriche per separazioni in solventi organici, con particolare attenzione alle membrane da nanofiltrazione (SRNF). Nel Capitolo 3 è descritta la preparazione di membrane piane porose a base di PDMS. Due differenti metodi sono stati seguiti: nel primo, per formare i pori delle membrane, sono state usate specie chimiche quali acqua, iso-propanolo, metanolo, etanolo e glicole etilenico, che producono idrogeno gassoso in situ mediante reazione con i gruppi Si-H del crosslinker usato per preparare il PDMS (polimero formato da reazione di idrosililazione fra un pre-polimero e un crosslinker). Nel secondo metodo è stato usato l’1,4-diossano come additivo in grado di formare i pori successivamente alla sua rimozione dalla membrana. Nel Capitolo 4, è stata descritta la preparazione e caratterizzazione di membrane asimmetriche piane della co-polimmide P84®. E’ stato studiato l’effetto della concentrazione del polimero e del tipo del solvente sulla morfologia e proprietà di trasporto delle membrane. E’ stato inoltre investigato l’effetto della presenza di diverse concentrazioni di un co-solvente (1,4-diossano) o un non-solvente (acqua ed etanolo) nella soluzione polimerica. Le proprietà di trasporto delle membrane sono state valutate in test di permeazione con solventi organici e di reiezione nei medesimi solventi con molecole modello quali coloranti a diversa massa molare e carica Le membrane di P84® sono state reticolate, al fine di aumentarne la stabilità, mediante reazione con 1,5-diamino-2-metilpentano (DAMP). Le condizioni di reticolazione sono state ottimizzate variando la concentrazione del reagente e il tempo di reazione. Le membrane reticolate sono risultate completamente stabili in numerosi solventi organici inclusi solventi come DMAc, DMF e NMP, in cui il polimero di partenza era solubile. Nel Capitolo 5 è stata descritta la preparazione di fibre cave SRNF mediante inversione di fase indotta da non solvente, preceduta o meno, da una parziale evaporazione del solvente. Inoltre è stata realizzata una innovativa procedura di reticolazione in cui durante la filatura il DAMP è stato introdotto nel fluido interno. Le proprietà chimiche e meccaniche delle fibre sono state analizzate rispettivamente mediante FT-IR/ATR e test di elongazione. Inoltre sono stati condotti test di permeazione e reiezione usando la Rodamina B in acetonitrile ed etanolo.
  • Item
    Molecular modelling of imprinted membranes prepared by the noncovalent approach
    (2011-10-08) Garcia Del Blanco, Samuel; Drioli, Enrico; De Luca, Giorgio; Molinari, Raffaele