Dipartimento di Ingegneria dell'Ambiente - Tesi di Dottorato

Permanent URI for this collectionhttp://localhost:4000/handle/10955/101

Questa collezione raccoglie le Tesi di Dottorato afferenti al Dipartimento di Ingegneria per l'Ambiente e il Territorio e Ingegneria Chimica dell'Università della Calabria.

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    Weakly-compressible SPH modeling of fluid-structure interaction problems
    (2016-02-19) Meringolo, Domenico Davide; Veltri, Paolo; Tomasicchio, Roberto G.; Aristodemo, Francesco; Marrone, Salvatore; Macchione, Francesco
    IRISULTATI scientifici presentati nella tesi di dottorato riguardano la modellazione numerica, attraverso la tecnica lagrangiana SPH debolmente compressibile, di problemi di interazione fluido-struttura. Diversi aspetti, sia di natura puramente modellistico fisica che di natura ingegneristica ed applicativa, vengono investigati nella tesi. Nello specifico, parte dei risultati presentati ha come primo obiettivo la validazione del modello numerico, ottenuta attraverso diversi test preliminari: in primis la conservazione della soluzione idrostatica in un serbatoio d’acqua, dopodiché diversi test dinamici in cui viene presentata la conservazione dell’energia, dimostrando come l’energia meccanica dissipata dal sistema venga esattamente trasformata in energia termica. Alcuni aspetti legati all’ipotesi di debole compressibilità adottata alla base del modello SPH considerato, riguardanti l’istantaneo accumulo di energia elastica durante impatti, vengono già messi in luce in questa parte della tesi. I test dinamici svolti riguardano dunque l’evoluzione nel tempo di una massa d’acqua di forma circolare sottoposta ad un campo di forze centrale che periodicamente evolve in forme ellittiche, l’analisi dell’evoluzione di diversi casi di dam-break e l’evoluzione nel tempo di un fenomeno di tracimazione di un ostacolo orizzontale investito dal moto ondoso. Uno degli argomenti centrali della tesi di dottorato riguarda l’analisi dell’interazione di onde con strutture costiere come cassoni forati. I cassoni forati sono strutture marittime ampiamente utilizzate nelle zone portuali con l’obiettivo di minimizzare dell’energia riflessa del moto ondoso al fine di limitare oscillazioni di grande ampiezza dovute alla sovrapposizione di onde incidenti e riflesse, garantendo quindi, durante le mareggiate, condizioni di sicurezza per la navigazione. Suddette strutture sono state studiate, fino ad ora, essenzialmente attraverso modelli approssimati ed analisi sperimentali, mentre l’utilizzo di un modello numerico di dettaglio è stato raramente impiegato per il loro dimensionamento. In questo contesto, il modello SPH è stato implementato per studiarne nel dettaglio il comportamento idraulico e di stabilità strutturale. In particolare, durante le analisi numeriche si è andati incontro a difficoltà sia di natura computazionale che di natura modellistica nella loro simulazione. Una prima difficoltà è consistita nella riproduzione numerica dei muri verticali forati che costituiscono la parete frontale di queste strutture in quanto, essendo spesso caratterizzati da spessori sottili, rendono la simulazione computazionalmente onerosa nel contesto numerico SPH. In questo contesto vengono introdotte le multi-node fixed ghost particles, che consentono di poter utilizzare un numero totale di particelle pari ad (1=2)D, in cui D è il numero di dimensioni spaziali del problema, il numero totale di particelle altrimenti necessario. Nelle analisi effettuate relative a cassoni pienamente e parzialmente forati, in cui D = 2, il risparmio in termini di tempo di calcolo è stato rispettivamente del 79,5% e del 77.7 %. Un altro aspetto modellistico cui si è andati incontro nella simulazione dei problemi considerati è legato alla presenza di rumore nel campo di pressione ottenuto dalla soluzione SPH, che porta in molti casi a risultati difficilmente utilizzabili ai fini ingegneristici. Questo aspetto, che viene investigato in dettaglio nell’ultima parte del lavoro di tesi, è legato alla componente acustica della soluzione fornita dai modelli in cui il fluido è supposto essere debolmente compressibile. Nel tentativo di limitare tali oscillazioni in alta frequenza del campo di pressione, negli ultimi anni diversi autori hanno introdotto diversi termini diffusivi che agiscono all’interno dell’equazione di continuità. In generale questi modelli possono essere raggruppati in due formulazioni: la prima è costituita da termini che fanno riferimento alla formula di Morris; la seconda, nota come -SPH differisce dalla prima essenzialmente per l’aggiunta di gradienti renormalizzati del campo di densità. La prima famiglia di modelli è caratterizzata dall’introduzione di errori numerici in prossimità della superficie libera ed, inoltre, l’azione di “smoothing” deteriora la soluzione idrostatica nel tempo. In presenza invece di impatti l’azione diffusiva svolta da questi modelli risulta essere efficace nell’attenuazione di onde di shock non fisiche successive all’impatto. Il modello - SPH, essendo invece un operatore più accurato, non introduce alcun errore vicino alla superficie libera e conserva la soluzione idrostatica nel tempo. Nel caso invece di impatti, questo modello risulta essere meno efficace nell’azione di attenuazione delle onde di shock. Al fine di avere un modello che conservi le proprietà del fluido quando questo è caratterizzato da fenomeni di dinamica lenta e che agisca al meglio nel processo di attenuazione delle onde di shock conseguenti a dinamiche di impatto, o veloci, viene introdotto un modello diffusivo ibrido che permette di passare da una formulazione all’altra, a seconda delle condizioni presenti nella massa fluida, grazie all’introduzione di un parametro, , che attiva o disattiva i gradienti renormalizzati di densità. La modellazione dei contorni solidi sottili ed i termini diffusivi ibridi presentati vengono implementati per la simulazione numerica SPH dell’interazione onda-cassone forato. I risultati analizzati riguardano sia l’aspetto di stabilità dell’opera, riguardante in questo caso la valutazione delle pressioni dinamiche agenti sulle pareti della struttura, sia l’aspetto idraulico, riguardante la valutazione dei coefficienti di riflessione. Per quanto concerne le distribuzioni di pressione, i risultati numerici ottenuti dimostrano la presenza di cadute di pressione in prossimità dei fori della struttura legati all’effetto Bernoulli. Questo risultato numerico richiede, ad ogni modo, una più profonda investigazione dal punto di vista sperimentale, attraverso l’osservazione del comportamento del campo di moto in prossimità dei fori della parete. Per quanto concerne invece le analisi idrauliche, i coefficienti di riflessione sono stati valutati attraverso un metodo classico, considerando diversi valori del rapporto tra la larghezza della camera di assorbimento e la lunghezza d’onda.Nell’ultima parte del lavoro di tesi viene investigato il problema del rumore acustico nelle soluzioni ottenute dal presente modello SPH (e che riguarda, in generale, tutti i modelli debolmente compressibili) e viene presentata una procedura per il filtraggio corretto di tale componente basata sulla trasformata wavelet. L’idea che sta alla base della procedura di filtraggio presentata si basa sul fatto che la soluzione debolmente compressibile può essere scritta, per piccoli valori del numero di Mach, come la sovrapposizione di una soluzione incompressibile più una perturbazione acustica. Le equazioni di Navier-Stokes debolmente compressibili vengono dunque analizzate mettendo in evidenza la presenza di perturbazioni acustiche. Tale componente acustica è risolta analiticamente per un caso circolare, per cui viene dimostrato come i modi di vibrare ottenuti analiticamente corrispondano esattamente alle frequenze di vibrazione ottenute dal segnale di pressione simulando lo stesso problema con SPH. L’analisi successiva è effettuata considerando il problema della massa d’acqua sottoposta ad un campo di forze centrale. In questo caso, si osserva come la procedura presentata attraverso le wavelet consenta di filtrare correttamente la componente acustica, ottenendo esattamente la soluzione analitica. Questo risultato, essendo infatti caratterizzato da dinamiche non di impatto, è caratterizzato da un definito disaccoppiamento delle componenti acustica ed incompressibile, facendo si che il processo di filtraggio consenta di eliminare esattamente la componente acustica. I casi analizzati successivamente riguardano invece dinamiche più complesse, in cui avvengono impatti fluidi, caratterizzati quindi da singolarità nel campo di pressione. In questi casi si osserva come, al crescere dell’impulsività del fenomeno, la componente acustica ed incompressibile risultino sempre più accoppiate tra loro, per cui la procedura di filtraggio inevitabilmente elimina insieme alla componente acustica anche parte della soluzione incompressibile del problema, ovvero quella fisicamente basata. Tali risultati vengono analizzati considerando un cuneo d’acqua che impatta su una parete verticale e prendendo in esame un caso di sloshing in cui si osservano fenomeni di frangimento delle onde.
  • Item
    Characterization of real aquifers using hydrogeophysical measurements. An application to the chambo aquifer (Ecuador)
    (2014-10-29) Mendoza Trujillo, Benito Guillermo; Macchione, Francesco; Straface, Salvatore
  • Item
    Urban sewer flooding:analysis of the behavior of drainage systems during extreme rain events
    (2011) Tomei, Giovanni; Piro, Patrizia; Copertino, Vito; Maksimovic, Cedo; Macchione, Francesco
    Currently cities and communities are experiencing ever growing problems related to urban pluvial flooding. This is due primarily to inefficient drainage inlets and overloaded sewer systems. In fact, existing drainage systems rapidly reach their maximum capacity and tend to work pressurized even in the case of medium-entity storms. Damage and losses caused by flood events in urban areas, primarily life and economic losses and traffic disruption, can be significant. Moreover, this situation is destined to worsen in the immediate future due to the fervent urbanization process and the ongoing climate changes. This research is therefore aimed at investigating this type of event, because to guarantee an efficient working of the drainage systems is a prerequisite in modern societies. Specifically the broader objective of the study is to contribute to an improvement of urban flood management by enhancing urban drainage modeling and storm motion forecasting. In order to achieve such scope the following detailed tasks were performed: 1. Investigation of the various LiDAR Digital Terrain Models (DTMs) available for the drainage modeling of a study area. From literature review it is evident that a great effort has been made to improve existing hydraulic models and to develop new ones. Nevertheless, little interest has been devoted to evaluate the effects of the use of different available LiDAR DTMs on hydraulic modeling. The research is therefore motivated by the need to know how LiDAR DTMs with different detail scale (LiDAR DSM first, LiDAR DSM last and LiDAR DTM bare earth with overlapped building) can affect the hydraulic modeling of drainage networks. Every DTM is in fact characterized by a variable presence of non-ground surface features, such as cars, buildings or vegetation, that will influence surely the hydraulic response of the urban catchment differently. Consequently every data set was studied by GIS-based analysis methods, such as calculation of surface depressions, in order to evaluate whether the consideration of all the non-ground features is necessary for hydraulic modeling purposes, or whether the use of a less detailed LiDAR DTM, adequately improved, could be an approachable solution. 2. Analysis of improvements brought by a dual drainage approach in simulating the behavior of a drainage network during extreme rain events, compared to the use of a conventional methodology. Another question that justifies the work carried out by the author and presented in the thesis is related to the need of improving available urban drainage modeling. Most of these models are in fact based on process simplifications that are far removed from reality, such as assuming that when water leaves the sewer it is stored in a virtual reservoir and does not follow the natural flow paths, i.e. the effect of local topography is neglected. This approach provides a very biased image of flooding process. Consequently the research was aimed at quantifying capabilities and limits of two urban drainage modeling with diverse sophistication level. The first one was based on the classical hypothesis according to which the drainage system is composed only of the sewer system, that is to consider that stormwater, once entered the sewer system, can no longer leave this system coming back to the surface. Instead the second one was based on the dual drainage approach, i.e. it was assumed that the urban drainage system was composed of a surface network and the sewer network. The evaluation of the best approach was performed by comparing the water volume distributions in the sewer network and the number of surcharged sewer trunks resulting from hydraulic simulations. Specifically the issues relative to the development of the most complicated model, that is the dual drainage one, were studied in more detail: the influence of buildings and DTM resolution on the surface network definition, and the introduction of criteria to be taken into account for pond filtering parameters were the topics deepened through the use of an innovative methodology, the AOFD tool (Automatic Overland Flow Delineation).3. Study of the potentials of a dense network of rain gauges in forecasting storm movements for flood prevention purposes. This research was performed because, currently, methods for rainfall prediction are mainly based on radar measurements. However rain gauge data are often available whereas radar data are not. Furthermore radar instruments enable the investigation of convective cells motion, whereas rain gauges data allow the analysis of the movement of rainfall patterns recorded on the ground, that is more important for hydraulic modeling. Consequently storm movement parameters, velocity and direction, were derived by analyzing rainfall data trough available storm tracking procedures. The method proposed by Diskin was tested and, in particular, the extent to which the choice of the reference feature in the hyetograph and the location of the recording stations inside the catchment can affect the results of the methodology was studied in detail. The quality of the elaborations was estimated by comparing the results obtained with other physical phenomena which are related to storm movement, such as wind movement data. In particular statistical analysis, based on the computation of the correlation coefficient and root mean square deviation between storm and wind data sets, were performed. With the results from the research presented herein, it is expected that: 1. DTM enhancement methods generate hydraulically corrected DTMs that can potentially lead to improvements in urban pluvial flood modeling. 2. more realistic simulations of the drainage system are performed by developing dual drainage models. In this way engineers could aim at minimizing both the costs of construction of new works and maintenance of existing structures by evaluating systematically the effectiveness of all the possible design solutions. Actually, the use of such a modeling will have to push them to optimize the working conditions of both the surface and sewer networks when evaluating flood control and mitigation measures. 3. rain gauges are considered as valid alternatives in rainfall movement prediction, to be taken into account in areas where radar measurements cannot be obtained yet. In fact the results of the elaborations will demonstrate how such instruments, that are more approachable than radar ones for economical and practical reasons, are very useful in forecasting the movements that future storm events can make in a monitored area. Similar information could be also used in connection with hydraulic models, previously calibrated for the same study area,in order to evaluate in advance the possible flood-prone areas. In addition the analysis of the results, obtained by considering an ever decreasing number of recording stations, will give interesting information to municipalities having limited budget for equipping themselves with an adequate number of such instruments.