Dipartimento di Ingegneria dell'Ambiente - Tesi di Dottorato

Permanent URI for this collectionhttp://localhost:4000/handle/10955/101

Questa collezione raccoglie le Tesi di Dottorato afferenti al Dipartimento di Ingegneria per l'Ambiente e il Territorio e Ingegneria Chimica dell'Università della Calabria.

Browse

Search Results

Now showing 1 - 10 of 12
  • Item
    Renewable energy generation and hydrogen production from concentrated brine by reverse eectrodialysis
    (2016-02-26) Tufa, Ramato Ashu; Drioli, Enrico; Curcio, Efrem; Molinari, Raffaele
    Salinity Gradient Power-Reverse Electrodialysis (SGP-RE) is among the emerging membrane-based technologies for renewable energy generation. In RE, cation exchange membranes (CEM) and anion exchange membranes (AEMs) are alternatively aligned to create a high concentration compartment (HCC) and low concentration compartment (LCC). When the compartments are feed by a low concentration and high concentration solution, salinity gradient is created which initiates the diffusive flux of ions towards electrodes. Electricity is generated by the redox process occurring at the electrodes. The total voltage generated (open circuit voltage, OCV) is proportional to the number of membrane pairs (cells). One of the challenges pertaining to the Ohmic losses when using very low concentration salt solutions like river water can be reduced by working with highly concentrated brines (Chapter 1). Investigation of the performance of RE under realistic high-salinity conditions is crucial for implementation of RE under natural condition. The most abundant ions in natural waters involve sodium, magnesium, calcium, chloride, sulfate, and bicarbonate. Under this condition, the presence of multivalent ions, in particular Mg2+, have a lowering effect on OCV and hence a reduction of power density. This could be attributed to the enhancement of cell resistance in the presence Mg2+ ion resulting in an increase of membrane resistance. The SGP potential and comparable decrease in power density of RE operated with solutions mimicking real brackish water and exhaust brine from a solar pond depicts the pretreatment requirement in RE for better performance (Chapter 2). Seawater reverse osmosis (SWRO) is the most widespread technology for fresh water production in many parts of the world. Extensive research have been carried out to tackle the technological challenges coming along with the expansion of SWRO practice with time, specifically the reduction of energy consumption. The integrated application RE in desalination technologies in the logic of process intensification is an interesting approach towards low energy desalination. Simultaneous production of energy and desalted water is possible by hybrid application of Direct Contact Membrane Distillation (DCMD) and RE units operated on the retentate stream from a SWRO desalination plant. The use of concentrated brine for energy recovery also leads to Near-Zero Liquid Discharge from desalination systems. This avoids the adverse ecological effect of discharging hypersaline solution into natural water bodies. Thus, integrated application of RE with RO and DCMD for simultaneous water and energy production represent an innovative approach towards low energy desalination and Near-Zero Liquid Discharge paradigm (Chapter 3). The possibilitity to exploit the chemical potential of sulfate wastes by SGP-RE can be a promising alternative renewable energy source. The key challenge remains the property of membrane in sulphate solution. Although the trends in the variation of desirable membrane properties (high permselectivity and low resistance) in Na2SO4 test solutions with varying operating conditions remain similar with that of NaCl test solution, their performance is comparatively low. This has a negative impact on the performance of the RE mainly on the obtained OCV and power density. Hence, design of well optimized and high performance membranes is required for practical applicability of SGP-RE for renewable energy generation from sulfate bearing waste resources (Chapter 4). Ion exchanging membranes (IEMs) are key components in RE. Low resistance and highly permeable ion exchange membranes are required for optimal performance of RE system. For practical applications of RE under real condition, IEMs which are less susceptible to fouling are required. There is a potential risk of fouling (for example, scaling of sparingly soluble salts) of IEM operated in concentrated brine. Operations under real conditions also require feed quality control, as the presence of multivalent ions negatively impact RE performance. The variation in Total Organic Carbon (TOC) and Total Hardness (TH) of feed samples may alter the membranes physico-chemical and electrochemical properties. In addition, long term stability of IEMs in concentrated brine govern their life time. Investigation on fouling and stability of IEMS, specifically in concentrated brines, would be essential to set a clear pretreatment requirement for the performance of RE under natural conditions (Chapter 5). For techno-economic optimization and feasibility study of RE, performance of large scale (industrial scale) systems need to be investigated under varying experimental conditions. Comparative assessment of operating conditions like feed concentration, flow velocity and temperature in a small scale RE and large scale RE systems is essential. In general, the trends in OCV and power density for industrial scale operations remain more or less similar to that of membrane based water and energy technologies (based on the difficulties to meet sustainability criteria) helps in identification of technological gaps and strategic solution (Chapter 9). Future research on RE will be focusing on optimal design and development of high performance membrane in hyper-saline solution. This will extend from design of highly permeable and low resistance ion exchange membranes to the development of fouling resistant and stable membrane, particularly in concentrated brine. The relationship between physicochemical membrane properties and fouling tendency under hyper-saline environment need to be assessed. The effect of other multivalent ions in seawater like SO4 2- and Ca2+ on the performance of RE under extreme operating conditions should be clearly outlined. For integrated applications in desalination technologies, for example with DCMD, the risk of scaling and fouling for practical applications should be investigated deeply. Better membranes and module designs are required for membrane desalination systems in general. For efficient application of RE in hydrogen technologies, specifically with APE water electrolysis, development of highly conductive and durable anion selective membranes as well as highly active and stable catalysts in corrosive alkaline environment is of future research interest. Above all, well established technoeconomic evaluations of a standalone and integrated applications of RE is essential in order to evaluate the feasibility of scale-up and commercialization of the technology as a renewable energy source (Chapter 10).
  • Item
    Functionalized polymeric membranes for development of biohybrid systems
    (2016-02-26) Vitola, Giuseppe; Giorno, Lidietta; Drioli, Enrico; Molinari, Raffaele
    Le proprietà di superficie di una membrana sono di grande importanza per la sua funzione. Mediante tecniche di funzionalizzazione chimica è possibile ottenere membrane con gruppi funzionali in grado di adempiere nuove e diverse funzioni che rendono la membrana funzionalizzata un dispositivo in grado di svolgere funzioni multiple trovando applicazione in vari impieghi. Le membrane funzionalizzate, infatti, trovano impiego nei processi di separazione, nei settori che richiedono l’uso di membrane biocompatibili, e nell’immobilizzazione di biomolecole che a sua volta trova applicazione nella preparazione di biosensori e bioreattori a membrana. Questi ultimi sono particolarmente interessanti poiché sfruttano l’alta superficie specifica della membrana e permettono di integrare il processo di separazione con quello catalitico. Il presente lavoro di tesi ha riguardato lo sviluppo di membrane polimeriche biofunzionalizzate per la decontaminazione di acque da sostanze tossiche quali i pesticidi organofosfati. Il lavoro è stato focalizzato sullo studio di diverse tecniche per l’ingegnerizzazione di membrane polimeriche aventi differenti caratteristiche chimico-fisiche. L’impatto dei diversi tipi di funzionalizzazione è stato valutato considerando il grado di legame e le proprietà catalitiche di biomolecole immobilizzate sulle membrane funzionalizzate. I polimeri utilizzati per l’immobilizzazione delle biomolecole sono stati il fluoruro di polivinilidene (PVDF) e il polietersulfone (PES), materiali ampiamente usati in sistemi di filtrazione. La proteina sieroalbumina bovina (BSA) e l’enzima lipasi da candida rugosa (LCR) sono state selezionate quali biomolecole modello per lo studio della capacità di legame e le proprietà catalitiche delle membrane ingegnerizzate. Le condizioni ottimali di funzionalizzazione e immobilizzazione sono state poi impiegate per lo sviluppo di sistemi bioibridi contenenti l’enzima fosfotriesterasi (PTE), un enzima in grado di operare la detossificazione di organofosfati. Al fine di migliorare le performance degli enzimi immobilizzati sul PVDF è stato sviluppato un nuovo approccio di ingegnerizzazione. Esso ha riguardato la sintesi di nanoparticelle colloidali a base di poliacrilammide e il loro utilizzo, dopo opportuna funzionalizzazione, come vettori per l’immobilizzazione covalente di enzimi sul PVDF. La nuova strategia di immobilizzazione ha permesso di mantenere il microambiente idrofilo a livello dell’enzima immobilizzato migliorandone di conseguenza le proprietà catalitiche. La strategia allo stesso tempo ha consentito di preservare l’idrofobicità della membrana. Tale proprietà è necessaria per lo sviluppo di sistemi operanti nella decontaminazione di aria. I risultati hanno mostrato che l’enzima fosfotriesterasi immobilizzato sul PES mantiene un’attività residua maggiore rispetto a quella dell’enzima immobilizzato sul PVDF. La membrana biocatalitica in PES è risultata idonea per la decontaminazione di organofosfati in fare acquosa.
  • Item
    Membrane crystallization for recovery of valuable compounds from waste streams
    (2016-02-26) Quist-Jensen, Cejna Anna; Drioli, Enrico; Macedonio, Francesca; Molinari, Raffaele
    Sustainable development and Process intensification strategy are guidelines for industrial processes in perspective. It is becoming more and more common that industry wants to fully exploit their resources due to environmental regulations, economic gain, sustainable standpoint, etc. In this perspective, waste streams have to be turned into resources in the most environmental friendly, economic and sustainable way. Membrane Engineering is already a key-figure to realize this objective. Novel membrane technologies such as membrane distillation (MD), membrane crystallization (MCr), pressure retarded osmosis (PRO), reverse electrodialysis (RED) and forward osmosis (FO), are evolving and are being suggested for a better exploitation of waste streams. This Ph.D. study focusses, particular, on Membrane crystallization (MCr), which is a novel technology for simultaneously production of water and minerals. It has several advantages with respect to conventional crystallizers in terms of purity, controlled kinetics and crystal morphology. Moreover, MCr is able to treat high concentration solutions, which are challenging for other traditional membrane operations. The current Ph.D. work emphasizes on various aspects of membrane crystallization for approaching zero-liquid discharge in industrial processes. Improved membranes, specifically developed for MCr applications, have to be manufactured. In this study, preliminary suggestions on membrane features are given for the requirements in MCr. Lab-made PVDF membranes with different characteristics have been tested and evaluated for their performance in MCr. This study, suggests that membranes with symmetric sponge layer structure and low thickness are favorable. Membrane of asymmetric structure with many macrovoids seems more pronounced to suffer from wetting. Moreover, it has been shown that, membrane crystallization is able to treat several kinds of feed solutions including RO brine, produced water and wastewater containing high amounts of sodium sulfate. The recovered crystals exhibit high purity, good size distribution and controlled growth. Na2SO4 can be recovered as different polymorphs and in this study it has been crystallized in the anhydrous form (Thenardite). Moreover, the process has shown excellent stability in terms of transmembrane flux and maintenance of hydrophobicity of the membrane. In some cases the treatment has been continued for more than 90 hours by only slight cleaning with distillate water. Membrane crystallization, in the direct-contact membrane distillation configuration, can normally treat solutions with very high concentrations. However, its limitations in the recovery of lithium from single salt solutions have been highlighted in this study. Vapor pressure, due to increase in concentration, is reduced significant, that it is not possible to reach LiCl saturation by this configuration. Likewise, combined direct-contact and osmotic distillation configuration have not been able to increase the driving force enough in order to exceed saturation. Instead vacuum membrane distillation has been introduced to eliminate the osmotic phenomena. This configuration has been able to recover LiCl in two different polymorph structures depending on the utilized operative conditions. Furthermore, integrated membrane system, including membrane crystallization, has shown excellent capability to treat orange juice. The quality of the juice has been maintained through ultrafiltration, membrane distillation and membrane crystallization treatment. In this study, the MD/MCr feed temperature is kept below 30 °C causing a relatively low flux. However, it has still been possible to reach from a concentration of 9 °brix to 65 °brix using MD/MCr. The advantages of MD/MCr with respect to isothermal osmotic membrane distillation configuration, is the elimination of the reconcentration stages of the draw solution. All the carried out case studies show that MD/MCr is able to reduce the volume of the waste stream significantly. The obtained results might be used as guidelines for practical application. Moreover, the low temperatures and atmospheric pressures utilized, makes it possible in real industrial processes to use waste or low-grade heat. Unlike other processes, MCr is able to produce two high quality products (i.e. water and salts) and will therefore not produce any additional waste. Hereby, the extended treatment by means of MCr will only positively influence the overall “sustainability” of the entire industrial process.
  • Item
    Preparation and characterization of hybrid nanosphers containing lipase for chiral drug biotransformation
    (2014-11-11) Verri, Francesca; Giordano, Girolamo; Macario, Anastasia; Molinari, Raffaele
    Le Lipasi sono adatte a catalizzare reazioni di esterificazioni in solventi organici, mostrando elevata enantioselettività rispetto a quella mostrata nelle reazioni di idrolisi. Rispetto al grande quantitativo di Lipasi descritte in letteratura, solo gli enzimi derivanti da poche specie hanno dimostrato di avere una adeguata stabilità e capacità di biosintesi che hanno permesso di utilizzarle in reazioni organiche e, quindi, la loro applicazione come enzimi di interesse industriale. Grazie a tali proprietà, le Lipasi sono stati ampiamente utilizzate per la produzione di composti enantiomericamente puri, nella risoluzione di alcool racemici e acidi organici. Vi è una tendenza sempre più in crescita verso l'uso di farmaci in forma di enantiomeri otticamente puri perché hanno target più specifici e hanno meno effetti collaterali rispetto alle miscele racemiche. Tra 1800 farmaci attualmente disponibili, circa la metà sono miscele chirali. Solitamente l'attività terapeutica di un farmaco viene mostrata solo da uni solo degli enantiomeri. In questo senso, l'attività farmacologica dei profeni, che costituiscono un importante gruppo di farmaci anti-infiammatori non steroidei (FANS) utilizzati nel trattamento di artrite e di malattie correlate, viene mostrata dal rispettivo (S) -enantiomero, che mostra un'attività 100 volte maggiore rispetto al suo antipode. Pertanto sforzi importanti per sintetizzare enantiomeri puri dei profeni sono attualmente in corso. Ibuprofene, è un acido carbossilico racemico, di cui ciascun enantiomero mostra un comportamento fisiologicamente diverso, essendo l'enantiomero (S) la forma che presenta una proprietà anti-infiammatoria. Negli ultimi anni, le lipasi sono stati utilizzati per la risoluzione chirale di (R,S)-Ibuprofene tramite esterificazione enantioselettiva, principalmente diretta in mezzi organici, per l'ottenimento del rispettivo estere racemico. Tra le diverse lipasi, la Lipasi da Rhizomucor miehei è in grado di catalizzare reazioni di est In particolare, in questo lavoro, la lipasi da Rhizomucor miehei è stato immobilizzato in nanosfere ibridi contenenti un nucleo liposomiale, in cui l'enzima è confinato. La fase organica (liposomi + lipasi) è stata protetta da una matrice di silice inorganica, creando cosi una struttura nanoparticellare (biocatalizzatori eterogenei). L'influenza di importanti fattori sperimentali nella procedura di sintesi dei biocatalizzatori ibridi sono stati studiati: il rapporto in peso tra la quantità di silice e di liposoma utilizzate, e il tempo di miscelazione tra liposoma e lipasi. Tutti i campioni sono stati caratterizzati mediante note ed avanzate tecniche analitiche, al fine di mettere a punto una procedura si sintesi ottimale per l'ottenimento di un biocatalizzatore eterogeneo morfologicamente omogeneo in cui lipasi è perfettamente immobilizzata all'interno della fase liposomiale, a sua volta perfettamente ricoperta dal guscio di silice inorganica. La procedura ottimizzata è stata utilizzata per la preparazione di due tipologie di nanosfere ibride, in cui il guscio di siliceinorganica è stato sintetizzato con e senza l'utilizzo del surfattante (Hexadecylamine). I catalizzatori eterogenei ottimizzati sono stati successivamente utilizzati come catalizzatori, nel processo di esterificazione enantioselettiva dell' Ibuprofene racemico, allo scopo di valutarne la prestazione catalitica. In particolare, è stata studiata l'influenza di diversi parametri sulla performance catalitica dei biocatalizzatori eterogenei ottimizzati:  natura del solvente (un solvente polare: isoottano; solvente polare: dimetilformammide);  tipologia di alcool (alcool primario con differente lunghezza della catena : metanolo; 1 -propanol; 1-butanolo);  temperatura di reazione (27, 37, 50 e 80 ° C). La migliore prestazione catalitica per il biocatalizzatore eterogeneo, è stato mostrato a 37 ° C, utilizzando isoottano come solvente e 1-propanolo come alcool (valore di rendimento estere compreso tra 78 e 93%). Inoltre, è stata osservata una forte iper-attivazione dell'enzima immobilizzato, rispetto alla forma libera: nelle stesse condizioni di reazione la resa in estere della Lipasi Libers risulta essere solo del 25%. Inoltre, il riutilizzo (numero di turnover (TON) e numero di turnover di frequenza (TOF)) e la stabilità dei biocatalizzatori eterogenei sono stati determinati per una potenziale applicazione industriale. La stabilità dei biocatalizzatori ottimizzati sintetizzati è molto elevata: fino a 9 cicli di reazione con un numero TOF 16 volte più alto di quella della lipasi libera.
  • Item
    Molecular modelling of imprinted membranes prepared by the noncovalent approach
    (2011-10-08) Garcia Del Blanco, Samuel; Drioli, Enrico; De Luca, Giorgio; Molinari, Raffaele
  • Item
    Development of submerged biocatalytic membrane reactors for innovative production systems
    (2010-11-11) Chakraborty, Sudip; Drioli, Enrico; Giorno, Lidietta
  • Item
    Preparation and characterization of mesostructured functional materials with different morphologies
    (2008-11-17) Aiello, Daniela; Aiello, Rosario; Testa, Flaviano; Molinari, Raffaele
    Mesoporous materials with their good surface and structural properties and versatility can be synthesized in different morphologies (thin films, fibers, membranes, etc.) and represent excellent host matrices, highly functional and with great potentials for advanced applications. In this research work, mesoporous powders and thin films have been successfully achieved and then functionalized with special guest molecules such as organic molecules, organometallic complexes, fluorescent dyes, all having specific and interesting properties. Mesoporous matrices have been prepared by sol-gel chemistry with different mesostructures and high order degree. Chemical modifications approaches (post-synthesis grafting and one-pot synthesis) applied to porous supports highly organized have allowed to product a new class of functional materials, particularly interesting for various applications (opto-electronic, photovoltaic materials, etc.). Surface and structural characterization techniques (FTIR, UV-Vis, fluorescence, ellipsometry spectroscopies, electron transmission microscopy, XRD diffraction and porosimetry analysis) have allowed to investigate the effects of the introduction of guest species inside mesoporous matrices and to identify noteworthy changes about organization and mesostructures. Results show that mesoporous materials, both as powders and thin films, do not suffer significant reductions of surface (surface area, pore volume and diameter) and structural properties (order degree, mesostructure organization, stability) after functionalization process, representing confined environment well adapted to various guest species, with the advantage to increase their activity and physic-chemical properties. In particular, guest species are well trapped into rigid porous matrices with an increase of their functional properties and inorganic network stability. All results have demonstrated that the high structural homogeneity, the control over surface and morphological properties and also the possibility to host different molecules permit to project and engineer high potential technological materials for applications in optic and electro-optic fields.