Dipartimento di Chimica e Tecnologie Chimiche - Tesi di Dottorato
Permanent URI for this collectionhttp://localhost:4000/handle/10955/32
Questa collezione raccoglie le Tesi di Dottorato afferenti al Dipartimento di Chimica e Tecnologie Chimiche dell'Università della Calabria.
Browse
6 results
Search Results
Item Advanced mass spectrometry-based strategies for the isolation and characterization of G protein-coupled estrogen receptor 1(GPR)(2014-11-28) Thangavel, Hariprasad; Gabriele, Bartolo; Sindona, Giovanni; Napoli, AnnaEstrogen signaling plays a vital role in breast, ovarian and endometrial cancers. The actions of estrogen are mainly mediated by classical estrogen receptors, ERα and ERβ that belongs to the nuclear receptor superfamily. In recent years, a class of membrane-associated estrogen receptors are found to mimic the functions of classical ERs, including genomic as well as non-genomic signaling. These non-genomic signaling events include pathways that are usually thought of as arising from transmembrane growth factor receptors and G protein-coupled receptors (GPCRs). GPCRs belong to a superfamily of cell surface signaling proteins. GPCRs represent the most significant family of validated pharmacological targets in medical biology. A member of the GPCR family, named GPER, mediates rapid biological responses to estrogen in diverse normal and cancer cells, as well as transformed cell types. The identification and characterization of GPER will lead to understand the mechanisms underlying complex biological pathways and identify potentially new drug targets. Here, we proposed a novel gel-free method to isolate and enrich GPER from crude lysate using home-made hydroxyapatite column (HTP). The HTP eluate was subjected to cellulose acetate (CA) filteration, followed by on-membrane protein digestion with different proteases and analyzed by MALDI MS. GPER was identified by peptide mass fingerprinting (PMF) after intensive data analysis. Sequence analysis reports 3 potential N-glycosylation in GPER. We manually validated 2 out of 3 glycosylation sites in GPER from the obtained MS/MS data and also validated the glycan moieties predicted by Glycomod. This approach is the first of its kind to identify GPER and characterize post-translational modifications (PTMs) by MS-based proteomic analysis. The proposed method is simple, robust and unique with great reproducibility. Finally, we designed and synthesized polymer nanoparticles (NPs) in an effort to capture GPER with high affinity and selectivity from crude lysate. PNIPAm-based NPs were synthesized by a free radical precipitation polymerization method with no control over the functional monomer sequence. The NP binding affinity was evaluated against both truncated-GPER (short peptide epitopes) and GPER (whole protein). As the NPs were designed with complementary functionality against the peptides/protein, the NPspeptide/ protein binding will be through multipoint interactions. The initial qualitative results obtained by immunoblotting analysis revealed interesting hints on GPER’s competitive affinity towards NPs when probed against multiple antibodies. We anticipate to use this strategy as a sample purification step prior to MS-based proteomic analysisItem Development and optimization by experimental design of solid phase microextraction gas chromatography triple quadrupole mass spectrometry methods in aqueous matrices(2012-11-30) Monteleone, Marcello; Tagarelli, Antonio; Gabriele, Bartolo; Bartolino, RobertoIl presente lavoro di tesi relativo all‘attività di ricerca svolta durante il triennio di dottorato ha riguardato la messa a punto di metodi analitici per la determinazione di analiti in due distinte aree di interesse. La prima di ambito clinico ed ha riguardato la quantificazione in urina di metaboliti riconosciuti come marker in diagnostica clinica. In particolare ci si occupati della sarcosina come biomarker del tumore alla prostata, e di tre acidi: acido omovanillico (HVA), acido vanilmandelico (VMA) ed acido 5-idrossindoloacetico (5-HIAA) come marker urinari del neuroblastoma. Il secondo ambito di lavoro ha riguardato la quantificazione di inquinanti in matrici acquose, vale a dire carbammati ed acidi perfluoroalchilici. In particolare gli analiti, previa derivatizzazione con alchilcloroformiati (eccetto i carbammati), sono stati estratti dalle matrici acquose (acqua e urina) tramite la tecnica della microestrazione in fase solida (SPME) e successivamente analizzati mediante un gascromatografo con analizzatore di massa a triplo quadrupolo (GC-QqQ-MS). Le variabili significative della microestrazione in fase solida in ciascun metodo sono state ottimizzate tramite l‘approccio multivariato dell‘ ― Experimental Design‖. L‘utilizzo della tecnica SPME ha consentito di poter estrarre gli analiti direttamente dal campione da analizzare minimizzando i tempi di preparazione dello stesso e riducendo l‘uso di solventi organici, ottenendo metodi poco costosi e basso impatto ambientale. L‘utilizzo dello spettrometro di massa triplo quadrupolo, ha consentito di raggiungere livelli di sensibilità molto elevati e, nel contempo, di identificare gli analiti con maggiore sicurezza. In tutti i metodi sviluppati, sono stati ottenuti ottimi risultati in termini di linearità accuratezza e precisione. Anche i valori dei limiti di rilevabilità (LOD) e dei limiti di quantificazione (LOQ) ottenuti in ciascun metodo possono essere considerati soddisfacenti.Item Traceability of foodstuffs by high tech methodologies of mass spectrometry(2011-10-26) Naccarato, Attilio; Bartolino, Roberto; Gabriele, Bartolo; Sindona, GiovanniItem Design, synthesis and characterization of suitable nitrones for several synthetic applications(2013-11-21) Melicchio, Alessandro; Bartolino, Roberto; Gabriele, Bartolo; Maiuolo, LoredanaThe present work takes advance of nitrone chemistry flexibility in order to synthesize, on one hand, bisphosphonates containing N,O-carbocyclic nucleoside units with potential biological activity, starting from nitrones with functionalizable ester or methylen bisphosphonated groups. On the other hand, to synthesize suitable allyl cyclic nitrones undergoing 2-aza-Cope rearrangement in order to study the [3,3]-sigmatropic process that has been rarely detected until now with neutral molecules which are nitrones. The synthetic strategy that we used for the bisphosphonates compound involves the synthesis of suitable nitrones and subsequently 1,3-dipolar cycloaddition reaction between these substrates and various vinyl nucleobases that carries at formation of isoxazolidinyl nucleosides. We decided to synthesize them for their significant pharmacological properties that make them very appealing: they showed a considerable cytotoxic activity against several human cell lines and therefore they could be successfully employed as anticancer drugs. Furthermore, bisphosphonates can be considered as stable analogs of pyrophosphate, that is implied in the physiological regulation of bone calcification and resorption. Moreover, during the staying at the University of Zaragoza in Spain, a synthesis of suitable cyclic allyl nitrones was carried out. In general aza-Cope rearrangements have attracted great interest because of the ubiquitous presence of nitrogen-containing structures in natural and biological products as well as synthetic intermediates. These compounds give rise to 2-aza-Cope rearrangement and we reported a full experimental study based on NMR kinetic experiments of the activation energies required for both neutral and catalyzed 2-aza- Cope rearrangements of nitronesItem Solid phase microextraction (SPME) compled to gas chromatography-mass spectrometry for bioclinical, environmental and food analysis: theoretical studies and applications(2013-11-29) Gionfriddo, Emanuela; Bartolino, Roberto; Gabriele, Bartolo; Sindona, GiovanniItem Food quality and safety. A mass spectrometric approach for traceability and control of chemical contaminants in foodstuffs(2014-02-11) Macchione,Barbara; Giovanni Sindona; Bartolo,Gabriele