Tesi di Dottorato

Permanent URI for this communityTesi di Dottorato

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Sviluppo larvale e metamorfosi nell’ascidia Ciona intestinalis: ruolo del monossido di azoto
    (2012) Ercolesi, Elena; Palumbo, Anna; Cerra, Maria Carmela
    Sviluppo larvale e metamorfosi nell’ascidia Ciona intestinalis: ruolo del monossido di azoto Lo sviluppo larvale e la metamorfosi dell’ascidia Ciona intestinalis rappresentano un processo molto complesso mediante il quale la larva natante si trasforma in un individuo giovane sessile attraverso una profonda ricostruzione del piano corporeo e la regressione della coda. A livello molecolare, avvengono alcuni processi quali l'attivazione della caspasi-3-simile e della MAPK (Chambon et al., 2002, 2007) e la produzione di monossido di azoto (NO) (Comes et al., 2007). In particolare, è stato dimostrato che l'espressione spaziale di ossido nitrico sintasi (NOS) e di NO è molto dinamica durante lo sviluppo di ciona. Il segnale si sposta rapidamente lungo tutta la larva coinvolgendo il sistema nervoso centrale e la coda nei suoi diversi compartimenti. Inoltre, l'NO regola la regressione della coda, agendo sulla apoptosi mediata da caspasi-3-simile. Il progetto di tesi é stato focalizzato ad uno studio approfondito del ruolo dell'NO durante lo sviluppo larvale e la metamorfosi di C. intestinalis, fornendo nuovi elementi sui bersagli molecolari dell'NO in relazione allo sviluppo ed alla risposta allo stress. Una serie di esperimenti, volti ad esaminare l'andamento e la velocità di metamorfosi in diverse condizioni dei livelli di NO, hanno rivelato che l'NO prodotto nelle larve di ciona contribuisce alla fosforilazione della MAP chinasi ERK, un evento chiave e necessario affinché la metamorfosi avvenga. In particolare, diminuendo i livelli endogeni di NO, trattando le larve alla schiusa con un inibitore della NOS o un agente che lega l'NO, si ottiene un rallentamento della metamorfosi ed una concomitante riduzione della fosforilazione di ERK. Al contrario, un aumento di NO mediante l'uso di un donatore di NO, determina una accelerazione del processo accompagnata da un aumento di attivazione di ERK. Su questa base, é stato ipotizzato un possibile meccanismo per spiegare la fosforilazione di ERK indotta da NO, basato sulla nitrazione di ERK, come suggerito da esperimenti paralleli di immunoprecipitazione, che hanno mostrato la correlazione tra il livello di fosforilazione di ERK e la sua nitrazione. Un altro dato importante emerso da questa tesi è la dimostrazione che l'NO media anche una altra via di trasduzione durante la metamorfosi di ciona che comporta la nitrazione delle proteine. Il trattamento con l'agente nitrante, il perossinitrito, determina una accelerazione della metamorfosi, mentre agenti che legano l'NO provocano un effetto opposto. Un notevole aumento di nitrazione è stato rivelato allo stadio larvale rispetto a quello embrionale ed inoltre ERK e P-ERK sono risultate essere nitrate mediante metodologie immunochimiche. La scoperta di elevati livelli di proteine nitrate durante un processo fisiologico, quale lo sviluppo, riveste particolare importanza alla luce di dati sempre più numerosi in letteratura sulla nitrazione delle proteine quale una nuova via di trasduzione capace di agire direttamente o indirettamente su altre vie. Ulteriori esperimenti sono stati condotti per indagare la risposta allo stress in larve di ciona indotto dalla aldeide prodotta dalle diatomee, la decadienale (DD). Larve trattate con questa aldeide mostrano un ritardo della metamorfosi dipendente dalla concentrazione dell'aldeide e dallo stadio larvale al quale si fa l'incubazione. È interessante notare che il trattamento con DD determina una riduzione della fosforilazione di ERK analogamente a quanto osservato quando i livelli endogeni di NO vengono dimunuiti. Ulteriori studi saranno necessari per delineare il meccanismo con il quale DD influenzi la metamorfosi ed il coinvolgimento dell'NO.
  • Item
    I nitriti come molecola segnale: effetti diretti e indiretti sulla regolazione dell'attività cardiaca
    (2012-11-20) Montesanti, Gabriella; Cerra, Maria Carmela; Canonaco, Marcello; Pellegrino, Daniela
    Nitrite anion is a physiological NO storage form and an alternative way for NO generation, recently emerged as a cardioprotective endogenous modulator. Using Langendorff perfused rat hearts, as paradigms of mammals heart, we explored nitrite influence on the Frank-Starling response. We demonstrated that, like NO, exogenous nitrite improves the Frank-Starling response in rat heart as indicated by Left Ventricular Pressure (LVP) and the maximal rate of LVP decline (LVdP/dtmax), used as indexes of inotropism. Noteworthy, the minimal negative derivative of intraventricular pressure, LVdP/dt min, used as indexes of lusitropism, was positively affected by nitrite, suggesting the anion involvement not only in the systolic but also in the diastolic phase. This positive influence of nitrite was unaffected by endocardial endothelium impairment and NOS inhibition. In addition, the effect resulted sensitive to NO scavengers, independent on nitroxyl anion, and mediated by a cGMP/PKG-dependent pathway. These results suggest that nitrite acts as a physiological source of NO modulating the stretch-induced intrinsic regulation of the mammals heart. Moreover, nitrite affects numerous biological processes through NO-independent pathways (Bryan et al., 2005), including the S-nitrosylation of thiol-containing proteins (Foster et al., 2003). The mechanisms underlying these phenomena, until now not fully understood, are of great interest because of their cardiovascular therapeutic potential. In the last part of this study we analysed in the rat heart whether nitrite affect S-nitrosylation of cardiac proteins and the potential targets for S-nitrosylation. Rat hearts, perfused according to Langendorff, were exposed to nitrite and then analysed by Biotin Switch Method. We showed that nitrite increased the degree of S-nitrosylation of a broad range of membrane proteins. Further analysis, conducted on subfractioned proteins, allowed us to identify a high level of nitrosylation in a small range of plasmalemmal proteins (45-50 kDa). The increment in S-nitrosylation at this location was characterized by using an anti-Kir2.1 rabbit polyclonal antibody. We also verified that this effect of nitrite is preserved in the presence of the NO scavenger P-TIO. Finally, we wanted to investigate the direct effects of nitrite using two specific inhibitors of the major nitrite reductase in the heart, xantine oxidoreductase and citocrome P450 (allopurinol and ketoconazole respectively). The effect of nitrite in the presence of these inibitors is a bit reduced compared to control. A further analysis of this result, we used nitrite in the presence of N-acetyl-L-cysteine (NAC), a specific inhibitor of the nitroxyl anion (HNO). In this case, unlike that observed with the P-TIO, the effect of nitrite is significantly reduced. Our results suggest, for the first time, that nitrite represents a direct S-nitrosylating agent in cardiac tissues and that Kir2.1 channels are one of the targets. These observations are of relevance since they support the growing evidence that nitrite is not only a NO reserve but also a direct modulator of important functional cardiac proteins