Tesi di Dottorato
Permanent URI for this communityTesi di Dottorato
Browse
2 results
Search Results
Item Mass and momentum transfer in membrane-based bioartificial liver systems(2017-07-11) Khakpour, Shervin; Pantano, Pietro; De Bartolo, Loredana; Curcio, EfremLiver failure, caused by acute or chronic end-stage liver disease (ESLD) imposes a significant disease burden worldwide. Chronic liver disease and cirrhosis is ranked as 12th cause of death in the United States and 4th in middle-aged adults. Researchers in Mayo Clinic report liver-related mortality as 8th by using a more comprehensive definition accounting for other aspects of liver disease as well. Currently, liver transplantation remains the conventional treatment for ESLD as the only medically proven method to promote patient’s health. To avoid the problem of inadequate donor organs and yet provide a comprehensive range of liver functions, cell-based therapies have been actively under investigation to potentially provide a substitute for transplantation, or a temporary support for liver failure patients. Studies on the latter aim has led to development of extracorporeal bioartificial liver (BAL) devices. Hepatic cell cultures are exploited for different applications in liver disease studies, drug toxicity testing, and bioartificial liver (BAL) devices. However, development of such systems is often hindered by the peculiar characteristics and intricate requirements of primary hepatocytes, challenging their prolonged functionality and viability in vitro. Despite the development of various 3D cell culture systems using perfused bioreactors, mass transfer properties still remain a critical and controversial topic, especially oxygen supply as the limiting and modulating factor The aim of this work is to enhance and optimize a prototype hollow fiber membrane bioreactor (HFMBR) providing efficient mass transfer for nutrient provision and catabolite removal, promoting prolonged viability and functionality of hepatocytes. In this bioreactor, two bundles of hollow fibers are employed in a crossed configuration: one bundle for supplying the oxygenated medium, and the other for removing the medium from the extra-capillary space. Optimization of the operational culture conditions to enforce an in vivo-like microenvironment is an intrinsic part of the process that requires a clear understanding of the in vitro cellular microenvironment. Oxygen transport in a convection-enhanced, crossed-configuration HFMBR hosting hepatocyte spheroids was investigated through mass transfer modelling using COMSOL Multiphysics®, a specialized, commercial finite-element software. The permeability of hollow fibers (hydraulic, albumin solution) was evaluated experimentally, showing significant, irreversible decrease in the permeance of the membranes due to protein absorption during culture period. Bioreactor’s hydrodynamics was investigated through residence time distribution analysis, by which a portion of the bioreactor was diagnosed as stagnant region. Finally, oxygen diffusion through the medium and the effect of different conditionings on the oxygen sensor’s readings in multi-well plates were studied. Mass transfer in static culture systems – both as a monolayer and as spheroids – was evaluated using a diffusion-reaction model numerically solved for oxygen (steady-state study) and urea (time-dependent study). In addition to the size and number of spheroids, sufficiency of oxygen supply to cells also depended on their distribution (the distance between them) and the amount of culture medium in each well. A convection-diffusion-reaction time distribution analysis, by which a portion of the bioreactor was diagnosed as stagnant region. Finally, oxygen diffusion through the medium and the effect of different conditionings on the oxygen sensor’s readings in multi-well plates were studied. Mass transfer in static culture systems – both as a monolayer and as spheroids – was evaluated using a diffusion-reaction model numerically solved for oxygen (steady-state study) and urea (time-dependent study). In addition to the size and number of spheroids, sufficiency of oxygen supply to cells also depended on their distribution (the distance between them) and the amount of culture medium in each well. A convection-diffusion-reaction time distribution analysis, by which a portion of the bioreactor was diagnosed as stagnant region. Finally, oxygen diffusion through the medium and the effect of different conditionings on the oxygen sensor’s readings in multi-well plates were studied. Mass transfer in static culture systems – both as a monolayer and as spheroids – was evaluated using a diffusion-reaction model numerically solved for oxygen (steady-state study) and urea (time-dependent study). In addition to the size and number of spheroids, sufficiency of oxygen supply to cells also depended on their distribution (the distance between them) and the amount of culture medium in each well. A convection-diffusion-reaction time distribution analysis, by which a portion of the bioreactor was diagnosed as stagnant region. Finally, oxygen diffusion through the medium and the effect of different conditionings on the oxygen sensor’s readings in multi-well plates were studied. Mass transfer in static culture systems – both as a monolayer and as spheroids – was evaluated using a diffusion-reaction model numerically solved for oxygen (steady-state study) and urea (time-dependent study). In addition to the size and number of spheroids, sufficiency of oxygen supply to cells also depended on their distribution (the distance between them) and the amount of culture medium in each well. A convection-diffusion-reaction model was developed to describe momentum and mass transfer in the bioreactor, in which the influential parameters were parametrized through implementation of applicable correlations. The model was numerically solved for two different types of geometries: (i) single-spheroid model using a periodic/symmetric unit cell within the bioreactor to locally represent the system decreasing the computational complexity of the model, (ii) miniaturized bioreactor model. The single-spheroid model was used to carry out a systematic parametric study to evaluate the effect of different parameters – oxygen tension (Co,sat), perfusion rate (QBR), hollow fiber spacing (δHF), spheroid diameter (Dsph), Michaelis-Menten kinetics for oxygen uptake (Vmax, Km) and porosities of the spheroid (εcc) and the membrane (εm) – on dissolved oxygen concentration (DOC) profile. Dimensionless numbers were defined for in-depth analysis of oxygen transfer and how each parameter can affect that. Among the operational conditions, Co,sat was found much more influential than QBR. Due to the mild advection added, the extra-spheroid resistances to diffusive mass transfer, i.e. the membrane (governed by εm) remains an important factor. However, εcc was found as a key intrinsic property strongly affecting intra-spheroid DOC profile. Maintaining physiological DOC range in large spheroids (Dsph=400μm) with different porosities was investigated in the single-spheroid model. Regulation of DOC profile was more manageable in spheroids with higher εcc, which lead to feasibility of achieving physiological oxygen concentrations. Low-porosity spheroids demonstrated a sharper concentration gradient, challenging sufficient oxygen supply to cells. Temporal shrinkage of spheroids due to rearrangement of cells changes the microstructure of the spheroid, the effect of which was numerically studied and proved to adversely affect the transport properties and consequently the DOC profile inside the spheroid. In the end, values from an experimental study were incorporated into the model to analyze the cellular microenvironment during the experiment, and the predictive capacity of the model regarding the outcome. Miniaturized bioreactor model was developed to reduce the computational cost while providing a more realistic model for the bioreactor. Another major advantage of this approach is capacitating investigation of the fluid dynamics inside the bioreactor. Notable DOC drop along the lumina of the supplying bundle was observed, consistent with the DOC gradient in the extra-capillary space along the supplying bundle. Having retentate flow in the hollow fibers significantly reduced these gradients and improved oxygen supply to the cells. Oxygen transfer was not noticeably affected by different flow patterns realized through using both bundles supplying or both removing the medium. However, minimization of the stagnant region had in fact a negative influence on oxygen supply. The miniaturized bioreactor model was also modified based on the experimental results for comparison with the single-spheroid model and the actual bioreactor, showing better compatibility with the real case.Item Performance of hollow fiber membrane bioreactor as a bioartificial liver(2017-07-11) Magdy Ahmed, Haysam Mohamed; Pantano, Pietro; De Bartolo, Loredana; Curcio, EfremC'è una crescente necessità di sviluppare un dispositivo bioartificiale di tipo epatico da utilizzare sia in applicazioni in vitro, per la sperimentazione della tossicità di molecole da parte delle aziende farmaceutiche, e sia in applicazioni cliniche per supportare pazienti con insufficienza epatica in attesa di trapianto di organo. A tale scopo è stato realizzato un bioreattore a membrana a fibre cave incrociate adoperante cellule epatiche umane in grado di favorire il mantenimento a lungo termine di epatociti. Il bioreattore è costituito da due fasci di membrane a fibre cave (HFM), uno deputato all’alimentazione e l’altro alla rimozione di cataboliti e prodotti specifici cellulari. I due fasci di fibre sono assemblati in una configurazione incrociata ed alternata in modo da stabilire una distanza l’una dall’altra di 250 μm. Questa configurazione del bioreattore delinea tre compartimenti separati: due compartimenti all’interno del lumen delle fibre cave dove il mezzo di coltura fluisce e un compartimento extraluminale dove le cellule sono coltivate. I compartimenti intraluminali ed extraluminale comunicano tra di loro attraverso i pori della parete di membrana. Il mezzo che fluisce nel lumen delle fibre di alimentazione permea nel compartimento cellulare, dove i cataboliti ed i metaboliti prodotti dalle cellule vengono rimossi dalle fibre cave deputate all’allontanamento dei molecole di sintesi e di scarto cellulari. In questo dispositivo le membrane a fibre cave consentono la compartimentalizzazione delle cellule in un microambiente controllato a livello molecolare ed il trasporto selettivo di molecole verso e dal compartimento cellulare proteggendo le cellule da eventuali sforzi di taglio. Inoltre, le membrane, grazie alla loro geometria intrinseca, offrono un'ampia superficie per l'adesione e la crescita delle cellule in un volume ridotto. Epatociti umani rappresentano una fonte cellulare ottimale da utilizzare nelle terapie che sono basate sull’uso di cellule, in quanto riflettono più da vicino le condizioni in vivo. In vivo gli epatociti sono altamente proliferativi all'interno del loro microambiente. Tuttavia, quando sono isolati dal loro microambiente e coltivati in vitro, perdono rapidamente le loro funzioni specifiche. Pertanto, è di importanza fondamentale la realizzazione di modelli in vitro in grado di mantenere gli epatociti vitali e funzionali per lungo tempo. Un aspetto critico è la la scarsa disponibilità di epatociti umani per cui occorre prendere in considerazione fonti cellulari alternative. Gli studi effettuati in questi ultimi anni indicano come una delle migliori fonti cellulari alternativa agli epatociti le cellule staminali, poiché queste cellule sono ampiamente disponibili possiedono in vitro un’elevata capacità proliferativa e possono essere differenziate in epatociti. A differenza delle cellule provenienti da animali e delle linee cellulari, le cellule staminali non costituiscono un rischio di trasmissione virale zoonotica o tumorigenicità. In questo lavoro, il bioreattore a membrana è stato ottimizzato al fine di creare condizioni di coltura per aggregati cellulari come sferoidi e per sistemi organotipici tridimensionali (co-coltura di epatociti e cellule non parenchimali) che garantiscano il mantenimento a lungo termine della funzionalità dei costrutti epatici umani. A tal proposito, le funzioni specifiche epatiche come l'urea, la sintesi dell'albumina e la biotrasformazione di farmaci sono state valutate nel bioreattore. I cambiamenti morfologici cellulari sono stati analizzati utilizzando il microscopio elettronico a scansione ed il microscopio confocale a scansione laser. Inoltre, il consumo di ossigeno delle cellule poste in coltura nel bioreattore è stato continuamente monitorato nel tempo al fine di assicurare un adeguato approvvigionamento di ossigeno. Gli sferoidi epatici umani, posti in coltura nello spazio extracapillare del bioreattore sono andati incontro ad un processo di fusione che ha portato alla formazione di strutture di maggiore dimensione simili a microtessuti. La fusione degli sferoidi è stata osservata sia tra le fibre che intorno alle fibre simulando il processo che avviene in vivo. Questo modello di coltura, grazie alle sue caratteristiche tridimensionali e all'aumentata interazione cellulare, così come avviene in vivo, ha favorito il mantenimento a lungo termine della vitalità e delle diverse funzioni specifiche epatiche come la sintesi di albumina ed urea ed il metabolismo xenobiotico. Allo stesso modo, nel sistema organotipico, le cellule si riorganizzano formando strutture tissutali simili a quelle del tessuto epatico in vivo. Questo è stato reso possibile grazie al piastramento sequenziale sulle membrane di cellule non parenchimali e parenchimali che hanno formato strutture stratificate tridimensionali simili a quelli in vivo. Il bioreattore che è stato ottimizzato in questo lavoro di tesi fornisce un microambiente di coltura ben controllato da un punto di vista molecolare attraverso l'alimentazione continua di sostanze nutritive, di cui una delle più importanti è l'ossigeno, e la rimozione di cataboliti. Ciò è stato confermato dai risultati relativi alla misura della concentrazione di ossigeno nel mezzo di coltura sia nella corrente in ingresso che in uscita dal bioreattore. In entrambi i modelli di coltura, l'approvvigionamento di ossigeno nel bioreattore è risultato essere sufficiente e significativamente maggiore a quello osservato in condizioni di coltura statica. Inoltre, una nuova fonte di cellule staminali, ovvero le cellule staminali mesenchimali derivate dal fegato, è stata utilizzata: le cellule sono state differenziate con successo in epatociti dopo 24 giorni di coltura, sia nel sistema statico che nel bioreattore. Tuttavia, il bioreattore ha mostrato una migliore capacità di mantenere la vitalità delle cellule e di differenziare le cellule staminali mesenchimalinel fenotipo epatico, come dimostrato dall'aumento dell'espressione genica di marcatori epatici specifici (ad es. albumina ed il fattore nucleare epatico alfa-4) e dalle velocità di sintesi di urea e albumina. Il prototipo di bioreattore realizzato su scala di laboratorio ha mantenuto con successo e funzionalmente attivi gli epatociti umani coltivati come sferoidi e in co-coltura con cellule non parenchimali per quasi un mese. Un aspetto importante è stato il differenziamento epatico delle cellule staminali mesenchimali, che rappresentano una potenziale fonte di cellule alternativa agli epatociti umani primari. Tutti questi risultati sono stati ottenuti utilizzando solo cellule umane, che convalidano le prestazioni del dispositivo che è stato sviluppato come sistema epatico bioartificiale da utilizzare in vitro. Questo bioreattore su scala di laboratorio ha un elevato potenziale applicativo cha va dagli studi in vitro delle malattie epatiche agli studi di tossicità a lungo termine. Inoltre, può essere realizzato su scala clinica ed applicato come fegato biartificiale per sostituire le funzioni epatiche di pazienti affetti da insufficienza epatica in attesa di trapianto.