Tesi di Dottorato
Permanent URI for this communityTesi di Dottorato
Browse
4 results
Search Results
Item Study of physical, mechanical and transport properties of polymeric membranes for gas separation(Università della Calabria, 2022-01-31) Longo, Mariagiulia; Cipparrone, Gabriella; Giorno, Lidietta; Carolus Jansen, JohannesThe work in this thesis is organised in different main topics. The first part is devoted to present Atomic Force Microscopy (AFM), carried out in force spectroscopy mode, as a powerful alternative to the more commonly used tensile tests for the analysis of the mechanical properties of polymers, and MMMs in particular. AFM force spectroscopy measurements are carried out with nanometric and micrometric tips on dense membranes of neat Pebax®1657 and on mixed matrix membranes of Pebax®1657 with different concentrations of an ionic liquid. This offers good perspectives for the analysis of samples where traditional tensile tests cannot be used, for instance composite membranes or particularly small samples. The second part of the research is focused on the relationship, between the transport properties and Young’s modulus for films of polymers of intrinsic microporosity (PIM) and on the effect of physical aging, investigated using pure gas permeability and atomic force microscopy (AFM) measurements in force spectroscopy mode. In the third part, the transport properties of polymer blend membranes are evaluated. In the last part, using a computational approach, it is possible to predict missing values for permeability starting with a collection of existing permeability values for other polymers. The data are estimated by means of machine learning models that correlate the behaviour of different gases. Thus, this thesis is structured as follows: Chapter 1 and Chapter 2 provide a general introduction on membrane technology and characterization methods used in this thesis, as well as the theoretical background and the description of all experimental techniques used; Chapter 3 describes the mechanical study on MMMs of blends of Pebax® and the ionic liquid ([BMIM][BF4]); Chapter 4 describes mechanical and gas transport studies on PIMs; Chapter 5 presents the gas transport analysis on Matrimid®5218/AO-PIM blend membranes; Chapter 6 discusses the results of the machine learning model. Chapter 7 presents the overall conclusions of the work and gives a brief future outlook of possible and desired developments in the field.Item Use of submerged membrane technology for the treatment of olive mill wasterwater: fouling study and process performance(2017-07-21) D'Agostino, Napoleone; Carbone, Vincenzo; Giorno, LidiettaThe objective of this research work was to study the performance of an immersed (or submerged) membrane system for the treatment of vegetative waste water, coming from the production of olive oil (or Olive Mill WasteWater OMWW). To this end, a prototype has been built up on a bench‐scale capacity of 5 L, which employs a bundle of polymeric hollow fiber membranes. The approach of the study has been to divide the survey on three fronts: the first aimed at studying the waste water matrix in order to identify a pre‐treatment method capable of favoring the membrane filtration processes limiting the fouling (fouling ); the second involved the study of fouling by adsorption of the components present in the waters using different polymeric membranes, in order to identify the most suitable materials for the process; the third and final concerned the construction of the immersed membranes system and to the study of its performance as‐a‐function‐of‐process‐parameters. The chemical/physical analysis on the vegetation water evidenced range of values affected by different parameters related to the production of olive oil. Parameters such as the collection period, maturation of the fruit, the climate and soil can significantly vary the chemical concentration of a compound, which can become more than double in certain condition. This means that the effluent to be treated needs a flexible process to cope with such variations. One of the properties of the waste water that does not vary is the Z potential of the solution. The post production vegetation waters have a potential value of about ‐30 mV, which defines a stable solution, and the inability of the particles in solution to undertake processes of aggregation and or flocculation. On the basis of this finding it has been studied a treatment that provided for the destabilization of the solution to values of Z potential between ± 5 mV, in such a way as to favor the attraction between the particles in solution and subsequent sedimentation. Once removed the deposit of material, is obtained an effluent easier to treat with the processes of submerged membrane filtration compared to the original effluent. The interaction of the components that cause fouling on the membrane surface was studied using different membranes, which differed in composition of material and pore size. In order to understand the behavior of fouling, three different systems to put in contact vegetation water with membrane surface were used. The three different systems were intended to verify the different contributions to fouling by adsorpition of molecules on the surface of membranes and/or the intrusion of molecules within the pores due to the even minimum values of the hydrostatic pressure of the liquid column which is in contact with the membrane. By means of membrane ultrapure water permeability measurements, before and after contact with the waste water, and by morphological analysis of the surfaces of the same membranes, by atomic force microscopy (AFM), it was possible to define the degree of fouling and the mechanism for‐different‐types‐of‐membranes. The construction of a system immersed membrane system on a banch‐scale was obtained using hydrophilized polymeric hollow fiber membranes. The study of the influence of operating conditions on the efficiency of the process permitted to identify the parameters that make competitive the treatment of vegetable waste by means of immersed‐hollow‐fiber‐microfiltration. The membrane module was constructed with a bandle of about 50 polymeric hollow fibers of polyethylene having 0.4 μm pore diameter and the length of 20 cm. At the base of the module a system for the production of air bubbles was inserted connected to an air line with adjustable flow. The membrane module was installed inside a cylindrical tank with a capacity of 5 L and connected to an adjustable peristaltic pump. The lumens of the hollow fibers is occluded from the upper and immersed in the solution (in which the fibers are free to sway) while it is open from the end secured to the base of the module. The peristaltic pump creates a depression inside the fibers, which promotes the permeation of water through the membrane. A pressure gauge positioned along the connection line between the module and diaphragm pump measured the pressure downstream the fibers. The intent was to find a modus operandi that would allow the system to work continuously at a constant flow for 8 hours (the equivalent of a working day). The operating conditions studied include the influence of the transmembrane pressure, frequency and flow rate of air and the frequency of back‐flushing on the progress‐of‐the‐permeation‐flux‐over‐time. The studies have been conducted with various vegetative waters differing in pH and solids content. Results confirmed that a flexible system for the treatment of vegetative waste water was identified. In fact, the immersed membranes system was efficient in clarifying these waters in terms steady state permeate flux, product quality and reusability. It should be noted that the low transmembrane pressures employed determine a permeate flow through the immersed membranes lower compared to that usually obtained with side‐stream membranes. However, the lower power consumption and less tendency to fouling of immersed polymeric membranes makes the latter competitive for the first stage of water treatment with high pollutant load such as the vegetative waste water.Item Functionalized polymeric membranes for development of biohybrid systems(2016-02-26) Vitola, Giuseppe; Giorno, Lidietta; Drioli, Enrico; Molinari, RaffaeleLe proprietà di superficie di una membrana sono di grande importanza per la sua funzione. Mediante tecniche di funzionalizzazione chimica è possibile ottenere membrane con gruppi funzionali in grado di adempiere nuove e diverse funzioni che rendono la membrana funzionalizzata un dispositivo in grado di svolgere funzioni multiple trovando applicazione in vari impieghi. Le membrane funzionalizzate, infatti, trovano impiego nei processi di separazione, nei settori che richiedono l’uso di membrane biocompatibili, e nell’immobilizzazione di biomolecole che a sua volta trova applicazione nella preparazione di biosensori e bioreattori a membrana. Questi ultimi sono particolarmente interessanti poiché sfruttano l’alta superficie specifica della membrana e permettono di integrare il processo di separazione con quello catalitico. Il presente lavoro di tesi ha riguardato lo sviluppo di membrane polimeriche biofunzionalizzate per la decontaminazione di acque da sostanze tossiche quali i pesticidi organofosfati. Il lavoro è stato focalizzato sullo studio di diverse tecniche per l’ingegnerizzazione di membrane polimeriche aventi differenti caratteristiche chimico-fisiche. L’impatto dei diversi tipi di funzionalizzazione è stato valutato considerando il grado di legame e le proprietà catalitiche di biomolecole immobilizzate sulle membrane funzionalizzate. I polimeri utilizzati per l’immobilizzazione delle biomolecole sono stati il fluoruro di polivinilidene (PVDF) e il polietersulfone (PES), materiali ampiamente usati in sistemi di filtrazione. La proteina sieroalbumina bovina (BSA) e l’enzima lipasi da candida rugosa (LCR) sono state selezionate quali biomolecole modello per lo studio della capacità di legame e le proprietà catalitiche delle membrane ingegnerizzate. Le condizioni ottimali di funzionalizzazione e immobilizzazione sono state poi impiegate per lo sviluppo di sistemi bioibridi contenenti l’enzima fosfotriesterasi (PTE), un enzima in grado di operare la detossificazione di organofosfati. Al fine di migliorare le performance degli enzimi immobilizzati sul PVDF è stato sviluppato un nuovo approccio di ingegnerizzazione. Esso ha riguardato la sintesi di nanoparticelle colloidali a base di poliacrilammide e il loro utilizzo, dopo opportuna funzionalizzazione, come vettori per l’immobilizzazione covalente di enzimi sul PVDF. La nuova strategia di immobilizzazione ha permesso di mantenere il microambiente idrofilo a livello dell’enzima immobilizzato migliorandone di conseguenza le proprietà catalitiche. La strategia allo stesso tempo ha consentito di preservare l’idrofobicità della membrana. Tale proprietà è necessaria per lo sviluppo di sistemi operanti nella decontaminazione di aria. I risultati hanno mostrato che l’enzima fosfotriesterasi immobilizzato sul PES mantiene un’attività residua maggiore rispetto a quella dell’enzima immobilizzato sul PVDF. La membrana biocatalitica in PES è risultata idonea per la decontaminazione di organofosfati in fare acquosa.Item Membrane Emulsification to develop biohybrid microstructured and multifunctional systems(2009-11-13) Piacentini, Emma; Drioli, Enrico; Molinari, Raffaele; Giorno, Lidietta