Tesi di Dottorato
Permanent URI for this communityTesi di Dottorato
Browse
13 results
Search Results
Item Design of nanostructured composirte mambranes for water desalination(Università della Calabria, 2020-02-07) Perrotta, Maria Luisa; Carbone, Vincenzo; Gugliuzza, Annarosa; Giorno, LidiettaL'accesso alle risorse di acqua pulita al giorno d’oggi, continua ad essere uno dei più urgenti bisogni a livello globale, in cui esigenze economiche ed ecologiche richiedono tecnologie sempre più efficienti. L'acqua di mare potrebbe essere una preziosa fonte naturale per il recupero di acqua dolce e di minerali, da riutilizzare nelle catene produttive industriali e agricole e nelle attività comunali. In quest’ottica, le separazioni basate sulla tecnologia a membrana per ottenere dissalazione stanno giocando un ruolo sempre più importante, al fine di fornire adeguate risorse idriche di qualità, per un ampio spettro di applicazioni designate. Oggi, nella strategia di utilizzo di processi integrati a membrana per la dissalazione dell'acqua, uno degli obiettivi più importanti è lo sviluppo di membrane altamente performanti e selettive e, la ricerca si sta sempre più focalizzando su tecniche che potrebbero essere sia rispettose dell'ambiente che altamente efficienti. Il progetto di ricerca realizzato durante i tre anni del corso di dottorato, ha visto la combinazione di diversi materiali e tecniche, al fine di impiegare le membrane progettate in processi differenti ma entrambi connessi fortemente con i diversi step della dissalazione. Il lavoro, possiamo riassumere, ha perseguito i seguenti principali obiettivi: • Progettazione e sviluppo di membrane innovative attraverso la combinazione di differenti materiali al fine di ottimizzare le caratteristiche chimiche e morfologiche delle membrane per le applicazioni desiderate. Nello specifico sono state percorse due strade, al fine di raggiungere due diversi target: l’ottenimento di pori ordinati e regolari con un elevato carattere idrofobo per membrane con strutture a nido d'ape da utilizzare nella distillazione a membrana (MD) e, l'esplorazione delle capacità di nanomateriali 2D quando miscelati in matrici polimeriche di fluoruro di poli-vinilidene (PVDF), al fine di creare particolari interazioni per meccanismi assistiti nella cristallizzazione a membrana (MCr). • Applicazione delle membrane progettate e preparate per la dissalazione, nei due processi distinti: MD ed MCr, utilizzando soluzioni saline di cloruro di sodio (NaCl) a diversa concentrazione. • Comprensione degli effetti ottenuti attraverso la combinazione dei materiali utilizzati, a livello molecolare, con l’utilizzo di un approccio integrato computazionale-sperimentale. L'idea di base del lavoro è stata quella di progettare una differente gamma di membrane nanostrutturate, caratterizzate da una morfologia controllata e con specifica funzionalità chimica. Sono stati utilizzati diversi metodi per sviluppare le membrane, con lo scopo di ottenere proprietà superficiali ed intrinseche tali da determinare prestazioni migliori nei contattori a membrana, in particolare nelle tecnologie MD e MCr, citate in precedenza. Descrivendo brevemente le due tecniche, per quanto riguarda la distillazione a membrana, qui usata con configurazione a contatto diretto, è caratterizzata dalla presenza di correnti acquose mantenute a differenti temperature che sono separate da una membrana porosa idrofobica. In questo caso la temperatura di una delle due correnti (quella della corrente da trattare) è maggiore rispetto all’altra (che rappresenta il distillato) in modo da creare una differenza di temperatura ai due lati della membrana e quindi, una differenza nella tensione di vapore. Le molecole di vapore che si formano, attraversano i pori della membrana dal lato in cui la tensione di vapore è più alta, condensando dal lato in cui essa è più bassa. La cristallizzazione a membrana, può essere considerata come un’estensione della distillazione a membrana, e, viene usata anche in questo caso una membrana idrofobica microporosa per creare e sostenere un ambiente supersaturo e controllato in cui i cristalli possono nucleare e crescere. I vantaggi che possono verificarsi se si utilizza MCr, rispetto ai processi tradizionali, sono: elevato livello di purezza; controllo nella formazione dei diversi polimorfi; maggiore omogeneità nella dimensione e forma dei cristalli ottenuti e tempi di nucleazione più rapidi. MD ed MCr sono due processi distinti che però possono operare in un ciclo unico, in cui è necessario trattare corsi d'acqua con composizione diversa e diverso grado di salinità. Nell’ottica del lavoro svolto, l'attenzione si è concentrata sullo sviluppo di due tipi di membrane polimeriche a partire da diversi concetti e metodologie. Nel primo caso è stato utilizzato il metodo del “Breath Figures” per preparare membrane a nido d'ape multistrato con una struttura ben ordinata, al fine di migliorare la produttività e l'efficienza termica senza indurre resistenza al trasporto di massa, per l'applicazione nella distillazione a membrana. Nel secondo caso, la “Dry/Wet Phase Inversion” è stata preferita al fine di confinare i cristalli di materiali 2D nelle reti polimeriche del PVDF, con l'intento di promuovere meccanismi di chemiassorbimento tali, da determinare una riduzione dei tempi di supersaturazione e quindi nucleazione, con allo stesso tempo un maggior controllo nei parametri cinetici dei cristalli ottenuti. Tale lavoro sperimentale ha visto la validazione dei risultati ottenuti attraverso l’utilizzo della dinamica molecolare, e quindi di un lavoro computazionale volto alla comprensione molecolare dei diversi meccanismi coinvolti. I due differenti target, oggetto di studio in questa tesi di dottorato, sono stati proposti al fine di dimostrare come la manipolazione delle membrane utilizzando materiali e tecniche di entità diversa, consenta di migliorare la produttività e l'efficienza per i due processi descritti (MD e MCr), rispetto a quanto presente attualmente in letteratura. In entrambi i casi è stata comunque utilizzata la configurazione a contatto diretto della tecnologia di distillazione a membrana (DCMD), come descritto in precedenza. Nella prima fase del lavoro sono state preparate, caratterizzate ed applicate in MD, membrane “Honeycomb”, con cui il principale risultato raggiunto è stata l’ottenimento in contemporanea di un’alta produttività e di un’alta selettività. L'esplorazione di diversi tipi di tensioattivi, ha permesso di identificare nel sale viologeno dell’1,1′ -Ditetradecil-4,4′-dipiridinio [bis (trifluorometansolfonil)] ammide (14bp14(Tf2N)2), appartenente alla classe dei cristalli liquidi ionici (ILC), l'elemento chiave di base per migliorare l'equilibrio idrofilico/idrofobico, nella realizzazione di membrane con pori perfettamente ordinati. Infatti il suo utilizzo ha permesso di creare geometrie significativamente più ordinate, migliorando notevolmente il carattere idrofobo delle membrane realizzate. Successivamente è stato creato un coating nanoporoso sulla superficie della membrana honeycomb, realizzata con il polietersulfone (PES), utilizzando come materiale l’HYFLON AD, materiale perfluorurato e a bassa conducibilità termica, che ha quindi costituito il nanofilm attivo delle membrane a nido d'ape multistrato, permettendo l’ottenimento di prestazioni molto efficienti. Infatti sono stati raggiunti flussi elevati (> 50 L / m2h), ottima reiezione al sale NaCl (> 99%) ed alta efficienza termica (> 70%). Nella seconda fase del lavoro invece è stato esplorato il potenziale del Grafene e di un altro materiale 2D, il seleniuro di bismuto, confinati come nanofillers nelle matrici di PVDF. Per quanto concerne la realizzazione di tali membrane nanocomposite PVDF-grafene, sono state esplorate tre diverse concentrazioni percentuali di grafene, rispetto al PVDF tal quale: 0,5%, 5 % e 10 % p/p. Il principale target raggiunto è stato la riduzione dei tempi di induzione nella formazione di cristalli di NaCl, rispetto al PVDF tal quale. Con il grafene all'interno della matrice polimerica, i tempi di formazione dei cristalli sono compresi in tempi che variano tra i 230 e i 260 minuti (per una concentrazione di grafene che va dallo 0,5 al 10% p/p,) rispetto ai 286 minuti ottenuti con il PVDF tal quale. Inoltre sono stati anche ottenuti parametri cinetici migliori, come quelli del coefficiente di variazione [CV%], che indica il livello di omogeneità nella forma e nella dimensione dei cristalli. Infatti l'intervallo ottenuto per il CV è stato dal 26,67% al 35,8% per le membrane di PVDF-Grafene rispetto al PVDF tal quale, dove il CV registrato è stato dell’48,1%. Per il seleniuro di bismuto, miscelato nella matrice di PVDF, è stata utilizzata solo la concentrazione del 5% p/p, ed è stato raggiunto un CV del 46,40%. In termini di crescita dei cristalli, abbiamo ottenuto valori da 1 a 1,6 x 10-4 mm/min per le membrane di PVDF-grafene e 2,75x10-4 mm/min per la membrana di PVDF-seleniuro di bismuto, rispetto al PVDF tal quale dove il valore della velocità di crescita ottenuto è stato pari a 0,8x10-4 mm/min. Inoltre, l’approccio integrato sperimentale-computazionale, ci ha dato la possibilità di esplorare a livello microscopico ogni singolo fenomeno che si è verificato nel processo di MCr (nucleazione, formazione e crescita di cristalli) in particolare comprendendo l'interazioni esistenti ione-ione e quindi i fenomeni di aggregazione che si verificano nei meccanismi di formazione dei cristalli. Dal punto di vista computazionale, sono state esplorate solo due concentrazioni di grafene rispetto il PVDF tal quale: 5% e 10 % p/p, e i tempi di nucleazione sono risultati essere anche in questo caso ridotti rispetto al semplice PVDF, raggiungendo valori compresi tra 0,45 e 0,70 ns rispettivamente per PVDF-grafene al 5 % p/p e PVDF-grafene al 10%p/p. Invece con il PVDF tal quale è stato ottenuto un tempo di induzione pari a 0,9 ns. Sia sperimentalmente che attraverso gli studi teorici, è stata quindi validata la capacità del grafene di consentire la sovrasaturazione in meno tempo, e quindi meccanismi di nucleazione ridotti. Per concludere possiamo dire che il lavoro di tesi condotto nei tre anni di dottorato, ha esplorato una vasta gamma di materiali (PES, HYFLON, PVDF, materiali 2D, ecc.) al fine di calibrare finemente le caratteristiche chimico-fisiche e morfologiche delle membrane. nella prospettiva della desalinizzazione, utilizzando approcci sia sperimentali che computazionali, e applicando anche diverse metodologie di preparazione (Breath Figures e Dry/Wet Phase Inversion). Il leitmotiv del lavoro è stato quindi in linea con l'obiettivo principale della ricerca proposta all’inizio dell’attività di dottorato: manipolare materiali innovativi al fine di rendere funzionali le membrane polimeriche nanostrutturate per applicazioni nella desalinizzazione delle acque.Item Study of physical, mechanical and transport properties of polymeric membranes for gas separation(Università della Calabria, 2022-01-31) Longo, Mariagiulia; Cipparrone, Gabriella; Giorno, Lidietta; Carolus Jansen, JohannesThe work in this thesis is organised in different main topics. The first part is devoted to present Atomic Force Microscopy (AFM), carried out in force spectroscopy mode, as a powerful alternative to the more commonly used tensile tests for the analysis of the mechanical properties of polymers, and MMMs in particular. AFM force spectroscopy measurements are carried out with nanometric and micrometric tips on dense membranes of neat Pebax®1657 and on mixed matrix membranes of Pebax®1657 with different concentrations of an ionic liquid. This offers good perspectives for the analysis of samples where traditional tensile tests cannot be used, for instance composite membranes or particularly small samples. The second part of the research is focused on the relationship, between the transport properties and Young’s modulus for films of polymers of intrinsic microporosity (PIM) and on the effect of physical aging, investigated using pure gas permeability and atomic force microscopy (AFM) measurements in force spectroscopy mode. In the third part, the transport properties of polymer blend membranes are evaluated. In the last part, using a computational approach, it is possible to predict missing values for permeability starting with a collection of existing permeability values for other polymers. The data are estimated by means of machine learning models that correlate the behaviour of different gases. Thus, this thesis is structured as follows: Chapter 1 and Chapter 2 provide a general introduction on membrane technology and characterization methods used in this thesis, as well as the theoretical background and the description of all experimental techniques used; Chapter 3 describes the mechanical study on MMMs of blends of Pebax® and the ionic liquid ([BMIM][BF4]); Chapter 4 describes mechanical and gas transport studies on PIMs; Chapter 5 presents the gas transport analysis on Matrimid®5218/AO-PIM blend membranes; Chapter 6 discusses the results of the machine learning model. Chapter 7 presents the overall conclusions of the work and gives a brief future outlook of possible and desired developments in the field.Item Development of integrated membrane systems for the treatment of olive mill wastewater and valorization of highadded value bioproducts(2017-07-21) Bazzarelli, Fabio; Carbone, Vincenzo; Giorno, Lidietta; Piacentini, EmmaNowadays, it is well recognized that advanced clean technologies, able to work in mild conditions and with low energy input are necessary to face challenges in environment protection, ratio nal use of water, production of naturally derived stable bioactive compounds. Membrane technologies fulfill these requirements. Studies are necessary to tune materials and processes for specific applications. The treatment of wastewaters coming from olive oil production is among the critical issues in agro food industry. The present work promoted advances in the development of novel membrane systems for the treatment of olive mill wastewater (OM WW). Th e se waters represent a severe environmental problem due to their high organic load and phytotoxic and antibacterial phenolic compounds, which resist to biological degradation . Additionally, the large volume of OMWW produced in combination with the short discarding time, increases the importance for disposal of this waste. On the other hand, OMWW represents a significant source of polyphenols for health benefits , which can be revalorized and used for medical or agro alimentary purposes. They also represent novel environmentally friendly formulation for chemical m anufacturing. The development of new strategies for the disposal of these by products appears to be extremely useful from an environmental and economic point of view. An advantageous solution is to transform what until now was considered junk to be dispos ed of in resource to be exploited and from which to draw profi t, through the recovery of high added value natural products (bioproducts) and water. In this context, integrated membrane systems can permit the selective recovery of bioactive compounds, such as polyphenols as well as water recovering and purification Moreover, membrane technology is considered a powerful tool for the sustainable industrial development, being able to well respond to the goal of the process intensification strategy” in terms of reduction of the plant size, increase of the plant efficiency, reduction of energy consumption and environmental impact. Nevertheless, one drawback of m embrane filtration of OMWW is the membrane fouling that drastically reduces the process performance. Therefore, OMWW pretreatment upstream of membrane process is necessary to limit fouling phenomena and to increase filtration efficiency. In this thesis, a co mprehensive study from OMWW treatment to biophenols recovery and valorization and water purification by means of integrated membrane process was carried out. Initially, studies focused on the decrease the fouling phenomena. For this purpose, a novel strate gy for a suitable pretreatment of OMWW was identified that permitted to obtain the total removal of suspended solids, through the aggregation and flocculation of particles by maintaining the pH of OMWW at isoelectric point. Secondly, the research focused o n the assessment of the potentiality of OMWW treatment by microfiltration and ultrafiltration process at the laboratory scale. Different organic and inorganic membrane materials were investigated, evaluating the permeation flux and the performance in terms of TOC (Total organic carbon) and polyphenols rejection . Afterwards, processes for OMWW purification aimed at obtaining of biologically active fractions at high concentration as well as their encapsulation were developed. For this purpose pressure-driven membrane processes such as microfiltration (MF) and nanofiltration (NF) and a relatively new membrane operation such as osmotic distillation (OD) were developed on lab scale prototype to obtain and concentrate fractions; membrane emulsification (ME) was st udied for the encapsulation of concentrated fractions. For MF operation, the efficiency of an air back flushing cycle was evaluated to keep constant the permeate flux during the OMWW processing processing. The overall integrated membrane system produced an enriched fraction of polyphenols, as well as a water stream that can be reused for irrigation or membrane cleaning. The highly concentrated polyphenols produced by osmotic distillation, is used as functional ingredients for formulation of water in oil (W/O) emulsions by membrane emulsification. The pulsed back and forward ME has been selected as low shear encapsulation method because it is particularly attractive for the production highly concentrated microemulsions without causing coalescence. The best operative cond itions (transmembrane pressure, wall shear stress) to control particle size and size distribution and obtain high productivity (dispersed phase flux) have been investigated . Water in oil emulsions with a narrow size distribution and high encapsulation effi ciency were obtained. Furthermore, in the present work a n ovel procedure for encapsulation of olive polyphenols with high load into solid lipid particles using traditional method (rotor stator homogenizer) and membrane emulsification was studied. Finally, a productive scale plant of the integrated membrane system was developed and installed at olive mill. The plant included the pre filtration unit, microfiltration, nanofiltration and a further step represented by reverse osmosis. The reverse osmosis has bee n used at large scale instead of membrane distillation due to its higher technology readiness level. Overall, this productive scale plant system proved efficient for fully recovery of biophenols in the retentate stream as well as reclamation of purified wa ter.Item Advances in biocatalytic membrane reactors development(2017-07-21) Ranieri, Giuseppe; Carbone, Vincenzo; Giorno, LidiettaItem Development of bio-hybrid multifunctional polymeric-based membranes for bio-recogniton and bio-separation(2017-07-21) Militano, Francesca; Carbone, Vincenzo; Giorno, Lidietta; Poerio, TeresaLa tesi è stata suddivisa in 4 capitoli: o Il capitolo 1 tratta l‘analisi dello stato dell‘arte attuale relativo alle membrane polimeriche bio-ibride. Il capitolo include la discussione di aspetti importanti nello sviluppo delle membrane bio-funzionalizzate e le relative applicazioni adottando una visione critica dei diversi fattori che incidono sul processo di immobilizzazione. Inoltre, sono stati evidenziati gli avanzamenti proposti in quest‘area di ricerca. o Nel capitolo 2 sono stati presentati diversi aspetti relativi all‘uso delle membrane nel campo dei bio-sensori, come: le proprietà delle membrane, le loro funzioni, i vantaggi e le applicazioni. Ciò ha condotto ad una considerazione globale ed alla progettazione del lavoro che è stato svolto in questo specifico ambito di ricerca. o Nel capitolo 3 è riporta l‘attività sperimentale relativa allo sviluppo di membrane bio-ibride multifunzionali di cellulosa rigenerata mediante l‘immobilizzazione covalente di diverse biomolecole, e lo studio approfondito dell‘influenza delle proprietà delle proteine in soluzione sul processo di immobilizzazione nonché sulla struttura delle membrane bioibride. La discussione include: la funzionalizzazione e la caratterizzazione delle membrane; la caratterizzazione delle proteine in soluzione e la correlazione tra le loro proprietà ed il loro comportamento durante l‘immobilizzazione; lo studio dell‘attività delle biomolecole dopo l‘immobilizzazione e la valutazione delle potenziali applicazioni delle membrane bio-ibride sviluppate. o Nel capitolo 4 è riportata l‘attività sperimentale basata sullo sviluppo di membrane di cellulosa rigenerata altamente selettive aventi proprietà di bio-riconoscimento e bio-separazione e la loro relativa applicazione per il rilevamento di molecole target. La discussione riguarda: la progettazione e lo sviluppo di membrane di immuno-affinità; la valutazione delle abilità delle membrane di riconoscere molecole target; lo studio e l‘ottimizzazione di diversi aspetti e parametri quali la selettività, la stabilità e la possibilità di riutilizzare le membrane; l‘applicazione pratica nella concentrazione e rilevamento di molecole target.Item Use of submerged membrane technology for the treatment of olive mill wasterwater: fouling study and process performance(2017-07-21) D'Agostino, Napoleone; Carbone, Vincenzo; Giorno, LidiettaThe objective of this research work was to study the performance of an immersed (or submerged) membrane system for the treatment of vegetative waste water, coming from the production of olive oil (or Olive Mill WasteWater OMWW). To this end, a prototype has been built up on a bench‐scale capacity of 5 L, which employs a bundle of polymeric hollow fiber membranes. The approach of the study has been to divide the survey on three fronts: the first aimed at studying the waste water matrix in order to identify a pre‐treatment method capable of favoring the membrane filtration processes limiting the fouling (fouling ); the second involved the study of fouling by adsorption of the components present in the waters using different polymeric membranes, in order to identify the most suitable materials for the process; the third and final concerned the construction of the immersed membranes system and to the study of its performance as‐a‐function‐of‐process‐parameters. The chemical/physical analysis on the vegetation water evidenced range of values affected by different parameters related to the production of olive oil. Parameters such as the collection period, maturation of the fruit, the climate and soil can significantly vary the chemical concentration of a compound, which can become more than double in certain condition. This means that the effluent to be treated needs a flexible process to cope with such variations. One of the properties of the waste water that does not vary is the Z potential of the solution. The post production vegetation waters have a potential value of about ‐30 mV, which defines a stable solution, and the inability of the particles in solution to undertake processes of aggregation and or flocculation. On the basis of this finding it has been studied a treatment that provided for the destabilization of the solution to values of Z potential between ± 5 mV, in such a way as to favor the attraction between the particles in solution and subsequent sedimentation. Once removed the deposit of material, is obtained an effluent easier to treat with the processes of submerged membrane filtration compared to the original effluent. The interaction of the components that cause fouling on the membrane surface was studied using different membranes, which differed in composition of material and pore size. In order to understand the behavior of fouling, three different systems to put in contact vegetation water with membrane surface were used. The three different systems were intended to verify the different contributions to fouling by adsorpition of molecules on the surface of membranes and/or the intrusion of molecules within the pores due to the even minimum values of the hydrostatic pressure of the liquid column which is in contact with the membrane. By means of membrane ultrapure water permeability measurements, before and after contact with the waste water, and by morphological analysis of the surfaces of the same membranes, by atomic force microscopy (AFM), it was possible to define the degree of fouling and the mechanism for‐different‐types‐of‐membranes. The construction of a system immersed membrane system on a banch‐scale was obtained using hydrophilized polymeric hollow fiber membranes. The study of the influence of operating conditions on the efficiency of the process permitted to identify the parameters that make competitive the treatment of vegetable waste by means of immersed‐hollow‐fiber‐microfiltration. The membrane module was constructed with a bandle of about 50 polymeric hollow fibers of polyethylene having 0.4 μm pore diameter and the length of 20 cm. At the base of the module a system for the production of air bubbles was inserted connected to an air line with adjustable flow. The membrane module was installed inside a cylindrical tank with a capacity of 5 L and connected to an adjustable peristaltic pump. The lumens of the hollow fibers is occluded from the upper and immersed in the solution (in which the fibers are free to sway) while it is open from the end secured to the base of the module. The peristaltic pump creates a depression inside the fibers, which promotes the permeation of water through the membrane. A pressure gauge positioned along the connection line between the module and diaphragm pump measured the pressure downstream the fibers. The intent was to find a modus operandi that would allow the system to work continuously at a constant flow for 8 hours (the equivalent of a working day). The operating conditions studied include the influence of the transmembrane pressure, frequency and flow rate of air and the frequency of back‐flushing on the progress‐of‐the‐permeation‐flux‐over‐time. The studies have been conducted with various vegetative waters differing in pH and solids content. Results confirmed that a flexible system for the treatment of vegetative waste water was identified. In fact, the immersed membranes system was efficient in clarifying these waters in terms steady state permeate flux, product quality and reusability. It should be noted that the low transmembrane pressures employed determine a permeate flow through the immersed membranes lower compared to that usually obtained with side‐stream membranes. However, the lower power consumption and less tendency to fouling of immersed polymeric membranes makes the latter competitive for the first stage of water treatment with high pollutant load such as the vegetative waste water.Item Development of integrated membrane systems for the treatment of olive mill wastewater and valorization of highadded value bioproducts(2017-07-21) Bazzarelli, Fabio; Carbone, Vincenzo; Giorno, Lidietta; Piacentini, EmmaNowadays, it is well recognized that advanced clean technologies, able to work in mild conditions and with low energy input are necessary to face challenges in environment protection, ratio nal use of water, production of naturally derived stable bioactive compounds. Membrane technologies fulfill these requirements. Studies are necessary to tune materials and processes for specific applications. The treatment of wastewaters coming from olive oil production is among the critical issues in agro food industry. The present work promoted advances in the development of novel membrane systems for the treatment of olive mill wastewater (OM WW). Th e se waters represent a severe environmental problem due to their high organic load and phytotoxic and antibacterial phenolic compounds, which resist to biological degradation . Additionally, the large volume of OMWW produced in combination with the short discarding time, increases the importance for disposal of this waste. On the other hand, OMWW represents a significant source of polyphenols for health benefits , which can be revalorized and used for medical or agro alimentary purposes. They also represent novel environmentally friendly formulation for chemical m anufacturing. The development of new strategies for the disposal of these by products appears to be extremely useful from an environmental and economic point of view. An advantageous solution is to transform what until now was considered junk to be dispos ed of in resource to be exploited and from which to draw profi t, through the recovery of high added value natural products (bioproducts) and water. In this context, integrated membrane systems can permit the selective recovery of bioactive compounds, such as polyphenols as well as water recovering and purification Moreover, membrane technology is considered a powerful tool for the sustainable industrial development, being able to well respond to the goal of the process intensification strategy” in terms of reduction of the plant size, increase of the plant efficiency, reduction of energy consumption and environmental impact. Nevertheless, one drawback of m embrane filtration of OMWW is the membrane fouling that drastically reduces the process performance. Therefore, OMWW pretreatment upstream of membrane process is necessary to limit fouling phenomena and to increase filtration efficiency. In this thesis, a co mprehensive study from OMWW treatment to biophenols recovery and valorization and water purification by means of integrated membrane process was carried out. Initially, studies focused on the decrease the fouling phenomena. For this purpose, a novel strate gy for a suitable pretreatment of OMWW was identified that permitted to obtain the total removal of suspended solids, through the aggregation and flocculation of particles by maintaining the pH of OMWW at isoelectric point. Secondly, the research focused o n the assessment of the potentiality of OMWW treatment by microfiltration and ultrafiltration process at the laboratory scale. Different organic and inorganic membrane materials were investigated, evaluating the permeation flux and the performance in terms of TOC (Total organic carbon) and polyphenols rejection . Afterwards, processes for OMWW purification aimed at obtaining of biologically active fractions at high concentration as well as their encapsulation were developed. For this purpose pressure-driven membrane processes such as microfiltration (MF) and nanofiltration (NF) and a relatively new membrane operation such as osmotic distillation (OD) were developed on lab scale prototype to obtain and concentrate fractions; membrane emulsification (ME) was st udied for the encapsulation of concentrated fractions. For MF operation, the efficiency of an air back flushing cycle was evaluated to keep constant the permeate flux during the OMWW processing processing. The overall integrated membrane system produced an enriched fraction of polyphenols, as well as a water stream that can be reused for irrigation or membrane cleaning. The highly concentrated polyphenols produced by osmotic distillation, is used as functional ingredients for formulation of water in oil (W/O) emulsions by membrane emulsification. The pulsed back and forward ME has been selected as low shear encapsulation method because it is particularly attractive for the production highly concentrated microemulsions without causing coalescence. The best operative cond itions (transmembrane pressure, wall shear stress) to control particle size and size distribution and obtain high productivity (dispersed phase flux) have been investigated . Water in oil emulsions with a narrow size distribution and high encapsulation effi ciency were obtained. Furthermore, in the present work a n ovel procedure for encapsulation of olive polyphenols with high load into solid lipid particles using traditional method (rotor stator homogenizer) and membrane emulsification was studied. Finally, a productive scale plant of the integrated membrane system was developed and installed at olive mill. The plant included the pre filtration unit, microfiltration, nanofiltration and a further step represented by reverse osmosis. The reverse osmosis has bee n used at large scale instead of membrane distillation due to its higher technology readiness level. Overall, this productive scale plant system proved efficient for fully recovery of biophenols in the retentate stream as well as reclamation of purified wa ter.Item Functionalized polymeric membranes for development of biohybrid systems(2016-02-26) Vitola, Giuseppe; Giorno, Lidietta; Drioli, Enrico; Molinari, RaffaeleLe proprietà di superficie di una membrana sono di grande importanza per la sua funzione. Mediante tecniche di funzionalizzazione chimica è possibile ottenere membrane con gruppi funzionali in grado di adempiere nuove e diverse funzioni che rendono la membrana funzionalizzata un dispositivo in grado di svolgere funzioni multiple trovando applicazione in vari impieghi. Le membrane funzionalizzate, infatti, trovano impiego nei processi di separazione, nei settori che richiedono l’uso di membrane biocompatibili, e nell’immobilizzazione di biomolecole che a sua volta trova applicazione nella preparazione di biosensori e bioreattori a membrana. Questi ultimi sono particolarmente interessanti poiché sfruttano l’alta superficie specifica della membrana e permettono di integrare il processo di separazione con quello catalitico. Il presente lavoro di tesi ha riguardato lo sviluppo di membrane polimeriche biofunzionalizzate per la decontaminazione di acque da sostanze tossiche quali i pesticidi organofosfati. Il lavoro è stato focalizzato sullo studio di diverse tecniche per l’ingegnerizzazione di membrane polimeriche aventi differenti caratteristiche chimico-fisiche. L’impatto dei diversi tipi di funzionalizzazione è stato valutato considerando il grado di legame e le proprietà catalitiche di biomolecole immobilizzate sulle membrane funzionalizzate. I polimeri utilizzati per l’immobilizzazione delle biomolecole sono stati il fluoruro di polivinilidene (PVDF) e il polietersulfone (PES), materiali ampiamente usati in sistemi di filtrazione. La proteina sieroalbumina bovina (BSA) e l’enzima lipasi da candida rugosa (LCR) sono state selezionate quali biomolecole modello per lo studio della capacità di legame e le proprietà catalitiche delle membrane ingegnerizzate. Le condizioni ottimali di funzionalizzazione e immobilizzazione sono state poi impiegate per lo sviluppo di sistemi bioibridi contenenti l’enzima fosfotriesterasi (PTE), un enzima in grado di operare la detossificazione di organofosfati. Al fine di migliorare le performance degli enzimi immobilizzati sul PVDF è stato sviluppato un nuovo approccio di ingegnerizzazione. Esso ha riguardato la sintesi di nanoparticelle colloidali a base di poliacrilammide e il loro utilizzo, dopo opportuna funzionalizzazione, come vettori per l’immobilizzazione covalente di enzimi sul PVDF. La nuova strategia di immobilizzazione ha permesso di mantenere il microambiente idrofilo a livello dell’enzima immobilizzato migliorandone di conseguenza le proprietà catalitiche. La strategia allo stesso tempo ha consentito di preservare l’idrofobicità della membrana. Tale proprietà è necessaria per lo sviluppo di sistemi operanti nella decontaminazione di aria. I risultati hanno mostrato che l’enzima fosfotriesterasi immobilizzato sul PES mantiene un’attività residua maggiore rispetto a quella dell’enzima immobilizzato sul PVDF. La membrana biocatalitica in PES è risultata idonea per la decontaminazione di organofosfati in fare acquosa.Item Membrane emulsification for the development of particulate systems for drug encapsulation(2014-11-11) Imbrogno, Alessandra; Giorno, Lidietta; Drioli, Enrico; Molinari, RaffaeleIl micro-incapsulamento è una tecnica ampiamente utilizzata per incapsulare sostanze nutraceutiche, farmaci, proteine, cellule ecc. Oggigiorno, la ricerca nel campo farmaceutico viene sempre più indirizzata allo sviluppo di forme farmaceutiche a rilascio modificato (ad esempio emulsioni multiple, sfere e capsule mono/ polinucleate) in grado di migliorare la biodisponibilità di principi attivi scarsamente solubili. La maggior parte delle metodologie utilizzate per la preparazione di particelle micro e nano-strutturate prevedono un processo iniziale di emulsificazione. In questo caso, il controllo della dimensione e dell’uniformità delle gocce è di fondamentale importanza per produrre particelle solide di dimensione controllata, da cui dipende la via di somministrazione, la distribuzione nei tessuti e l’interazione con le cellule. Negli ultimi 25 anni, enormi progressi sono stati realizzati nella preparazione di emulsioni con una dimensione controllata delle gocce grazie a un sempre più vasto utilizzo dell’emulsificazione a membrana, un processo vantaggioso rispetto alle tecniche convenzionali in termini di semplicità operativa, basso consumo energetico, alta riproducibilità e facile scale-up. L’aspetto innovativo di questo processo è la produzione delle gocce di emulsione singolarmente, ottenuta mediante permeazione della fase dispersa attraverso i pori della membrana, mentre il distacco della goccia avviene all’uscita del poro per effetto di uno sforzo di taglio esercitato dal fluire della fase continua. Un grande potenziale dell’emulsificazione a membrana per la preparazione di formulazioni farmaceutiche è la possibilità di combinare le proprietà chimiche della formulazione con le proprietà strutturali della particella (quali dimensione e dispersione) in modo da realizzare prodotti con caratteristiche funzionali idonee a specifiche applicazioni. Nella realizzazione di sistemi micro e nano-strutturati per l’incapsulamento di molecole bioattive, le proprietà chimico-fisiche del materiale sono anche di fondamentale importanza. Tra i materiali organici, i polimeri biodegradabili (in particolare il poli-caprolattone e il copolimero dell’acido lattico e glicolico) sono quelli di maggiore impiego in quanto offrono la possibilità di realizzare particelle che, una volta introdotte nell’organismo, vengono degradate in sottoprodotti metabolizzati dalle cellule. Questa proprietà conferisce a questi materiali un’eccellente biocompatibilità e il rilascio del farmaco incapsulato nelle particelle può essere modulato dalla velocità di degradazione del polimero. Inoltre questi polimeri sono idrofobi e quindi ideali per l’incapsulamento di farmaci insolubili in acqua, una procedura necessaria per poter essere somministrati nella circolazione sanguigna. Nonostante questi polimeri siano ampiamente utilizzati per la preparazione di sistemi micro e nano-strutturati, numerose problematiche sono state riscontrate nel controllo della dimensione e dispersione delle particelle e la loro morfologia. Lo scopo del presente lavoro di tesi è quello di utilizzare l’emulsificazione a membrana per la preparazione di sistemi micro e nano-strutturati utilizzabili per l’incapsulamento di farmaci idrofili e lipofili e realizzati con i polimeri biodegradabili precedentemente menzionati. Dall’analisi dello stato dell’arte sono stati individuati una serie di requisiti importanti per la preparazione di sistemi particellari: i) produrre particelle con dimensione e dispersione controllata utilizzando un processo ad alta produttività; ii) mantenere un basso stress meccanico per preservare l’attività delle sostanze incapsulate; iii) utilizzare un processo che può essere applicato su larga scala a livello industriale. La produzione di particelle altamente uniformi e con dimensione controllata mediante l’utilizzo dell’emulsificazione a membrana è già stato pienamente riportato in letteratura. Tuttavia, la possibilità di poter ottenere una produzione controllata dell’emulsione mantenendo allo stesso tempo un’alta produttività e un basso stress meccanico nell’impianto è tutt’ora oggetto di studio. Sulla base di queste osservazioni, gli avanzamenti proposti dal presente lavoro di tesi sono: • migliorare la produttività e l’efficienza del processo di emulsificazione a membrana mediante: i) l’utilizzo di una membrana con bagnabilità asimmetrica lungo la sezione al fine di mantenere allo stesso tempo una produzione controllata dell’emulsione ad un alto flusso di fase dispersa; ii) l’utilizzo di membrane di tipo “setaccio” in acciaio inox in modo da combinare i vantaggi delle caratteristiche strutturali della membrana setaccio (bassa porosità, basso spessore, pori rettilinei e uniformemente distribuiti) con l'elevata resistenza chimica dell’acciaio inossidabile, che è meno soggetto allo “sporcamento” per interazione con i componenti dell’emulsione; • indagare, inizialmente su piccola scala e poi con processi adatti per la produzione su larga scala, la preparazione di sistemi micro e nano particellari combinando la emulsificazione a membrana con il processo di diffusione del solvente per ottenere un controllo della dimensione e morfologia delle particelle in modo preciso e riproducibile rispetto all’ evaporazione del solvente comunemente utilizzata; • investigare l’utilizzo di processi di emulsificazione a membrana recentemente introdotti per applicazioni su larga scala, quali emulsificazione a membrana con flusso pulsato e invertito della fase continua ed emulsificazione a membrana con movimento torsionale della membrana, per la produzione di particelle micro e nano-strutturate in condizioni di basso stress meccanico e alta produttività del processo.Item Bio-Hybrid Membrane Process for Food-based Wastewater Valorisation: a pathway to an efficient integrated membrane process design(2014-11-11) Gebreyohannes, Abaynesh Yihdego; Giorno, Lidietta; Curcio, Efrem; Aimar, Pierre; Vankelecom, Ivo F.J.; Molinari, RaffaeleThe food industry is by far the largest potable water consuming industry that releases about 500 million m3 of wastewater per annum with very high organic loading. Simple treatment of this stream using conventional technologies often fails due to cost factors overriding their pollution abating capacity. Hence, recently the focus has been largely centered on valorization through combinatorial recovery of valuable components and reclaiming good quality water using integrated membrane process. Membrane processes practically cover all existing and needed unit operations that are used in wastewater treatment facilities. They often come with advantages like simplicity, modularity, process or product novelty, improved competitiveness, and environmental friendliness. Thus, the main focus of this PhD thesis is development of integrated membrane process comprising microfiltration (MF), forward osmosis (FO), ultrafiltration (UF) and nanofiltration (NF) for valorization of food based wastewater within the logic of zero liquid discharge. As a case study, vegetation wastewater coming from olive oil production was taken. Challenges associated with the treatment of vegetation wastewater are: absence of unique hydraulic or organic loadings, presence of biophenolic compounds, sever membrane fouling and periodic release of large volume of wastewater. Especially presence of biophenolic compounds makes the wastewater detrimental to the environment. However, recovering these phytotoxic compounds can also add economic benefit to the simple treatment since they have interesting bioactivities that can be exploited in the food, pharmaceutical and cosmetic industries. The first part of the experimental work gives special emphasis on the development of biohybrid membranes used to control membrane fouling during MF. Regardless of 99% TSS removal with rough filtration, continuous MF of vegetation wastewater using 0.4 μm polyethelene membrane over 24 h resulted in continuous flux decline. This is due to sever membrane fouling mainly caused by macromolecules like pectins. To overcome the problem of membrane fouling, biocatalytic membrane reactors with covalently immobilized pectinase were used to develop self-cleaning MF membrane. The biocatalytic membrane with pectinase on its surface gave a 50% higher flux compared to its counterpart inert membrane. This better performance was attributed to simultaneous in-situ degradation of foulants and removal of hydrolysis products from reaction site that overcome enzyme product inhibition. Although the biocatalytic membrane gave a better performance, its fate is disposal once the covalently immobilized enzyme gets deactivated or oversaturated with foulants. To surmount this problem a new class of superparamagnetic biochemical membrane reactor was developed, verified and optimized. This development is novel for its use of superparamagnetic nanoparticles both as support for the immobilized enzyme and as agent to render the membrane magnetized. This reversible immobilization method was designed to facilitate the removal of enzyme during membrane cleaning using an external magnet. Hence PVDF based organic-inorganic (O/I) hybrid membrane was prepared using superparamagnetic nanoparticles (NPSP) as inorganic filler. In parallel, superparamagnetic biocatalytic nanocomposites were prepared by covalently immobilizing pectinase on to the surface of NPSP dispersed in aqueous media. The synergetic magnetic responsiveness of both the O/I hybrid membrane and the biocatalytic particle to an external magnetic field was later on used to physically immobilize the biocatalytic particles on the membrane. This magnetically controlled dynamic layer of biocatalytic particles prevented direct membrane-foulant interaction, allowed in-situ degradation, easy magnetic recovery of the enzyme from the surface of the membrane, use of both membrane and immobilized enzyme over multiple cycles and possibility of fresh enzyme make up. The system gave stable performance over broad range of experimental condition: 0.01-3 mg/mL foulant concentration, 1-9 g per m2 of membrane area bionanocomposites, 5- 45 L/m2.h flux and different filtration temperatures. Under condition of mass transfer rate prevailing reaction rate, the system gave upto 75% reduction in filtration resistance. After optimization of the different operational parameters, it also revealed no visible loss in enzyme activity or overall system performance, when 0.3 mg/mL pectin solution was continuously filtered for over two weeks. In addition, the chemical cleaning stability of the O/I hybrid membrane was studied under accelerated ageing and accelerated fouling conditions. The ageing caused change in the physicochemical characteristics and enhanced fouling propensity of the membrane due to step-by-step degradation of the polymeric coating layer of used NPSP. But 400 ppm NaOCl solution at pH 12 was found compatible; henceforth it was used to clean the membrane. Second major limitation identified during the treatment of vegetation wastewater is presence of large volume of wastewater that comes in short period following the harvest of olive fruit. To alleviate this problem, FO was investigated to concentrate the wastewater. This process is believed to be less energy demanding, suppose that draw solution does need to be regenerated, and with low foul propensity. By operating at 3.7 molal MgCl2 draw solution and 6 cm/s crossflow velocity, single-step FO resulted in an average flux of 5.2 kg/m2.h. and 71% volume concentration factor with almost complete retention of all the pollutants. Moreover, the system gave a stable performance over ten days when operated continuously. After FO, both NF and UF were used to fractionate the recovered biophenols from the concentrate streams of FO. Compared to polymeric UF membrane, ceramic NF gave better flux of 27 kg/m2.h at 200 L/h feed flow rate and 7 bar TMP. Finally, when FO was used as a final polishing step to recover highly concentrated biophenols from permeate of the UF; it gave an average flux of 5 kg/m2.h and VCF of 64%. In conclusion, a great success has been made in tackling the two most important challenges of vegetation wastewater valorisation using the concept of biohybridization and FO. The bioinspired NPSP provides strong evidence that magnetically controlled enzyme immobilization have an immense potential in membrane fouling prevention and paves a potential breakthrough for continuous wastewater filtration. By setting bio-inspired NPSP biocatalytic membrane reactor at the heart, it is possible to successfully use integrated membrane process for continuous valorisation of food based wastewater. In addition to fouling prevention, they open a new horizon for applications in localized biocatalysis to intensify performance in industrial production, processing, environmental remediation or bio-energy generation.