Tesi di Dottorato
Permanent URI for this communityTesi di Dottorato
Browse
5 results
Search Results
Item New strategies for the synthesis of functionalized substituted bisphosphonates: chemistry and biological activity(2012-11-29) MULANI, Iqbal Mubarak; Sindona, Giovanni; Gabriele, Bartolo; Bartolino, RobertoThe ever expanding cutting edge technologies in medicine for the benefit of society, the orthopedic branch is one among those significant branches in medicine pertaining to bone. Bisphosphonates (BPS) are being increasingly and successfully used to prevent bone fractures and the concerning problems of bone diseases such as Paget’s diseases, osteoporosis and tumour bone disease. In view of this specific problem, BPS are well established in the treatment of osteoclast -mediated resorbtive bone diseases including osteoporosis, Paget's disease and tumor-induced osteolysis. Recent studies suggest that, besides inhibiting bone resorbtion, BPS may also exert a direct antitumor effect, and this class of drugs has been shown to inhibit proliferation and to induce apoptosis in vitro in different human tumor cell lines. BPs are classified into two groups according to their chemical structure and mechanism of action: (i) non nitrogen containing BPS such as etidronate and clodronate that are of low potency and inhibit osteoclast function via metabolism into toxic ATPmetabolites and (ii) nitrogen-containing BPS (NBPS), such as pamidronate, alendronate, risedronate, ibandronate and zoledronate which is the most potent antiresorptive agent. Hence in present investigation we synthesized some several bisphosphonates bearing a substituted isoxazolidine ring by direct 1, 3- dipolar cyclization reaction in the absence of solvent and good yield under novel, promising and low cost microwaves catalysis. The method allows the simultaneous incorporation on the geminal position of the bisphosphonate framework, of basic nitrogen and of an oxygen atom, as third hook. The studies on the inhibitory potency of cyclic nitrogen containing bisphosphonates indicate that the presence of two geminal phosphonate groups is responsible for interaction with the molecular target. In addition, basic nitrogen in the heterocyclic side chain affects potency and its orientation is critical for effective inhibition of bone diseases. For the synthetic point of view, different aryl and alkyl substituents on the isoxazolidine ring prompt us to investigate the ring opening of these compounds through cleavage of the N-O bond. This strategy represents a novel access to new gem-hydroxyl bisphosphonates, bearing aryl substituents on the lateral chain. The reductive cleavage of the N-O bond in isoxazolidines represents a simple and direct access to N-substituted aminoalcohols, valuable intermediates in many synthetic strategies. Moreover, additional reaction path way have been envisaged leading to the formation of non-hydroxyl bisphosphonates.Item Un approccio innovativo di spettrometria di massa per il recupero di nutraceutici ad alto valore antiossidante da piante, sviluppo di nuovi alimenti funzionali, qualità e sicurezza agroalimentare.(2011-10-26) Romano, Elvira; Bartolino, Roberto; Gabriele, Bartolo; Sindona, GiovanniItem Modern mass spectrometric applications in the structure and function evaluation of active principles(2011-10-26) Malaj, Naim; Gabriele, Bartolo; Sindona, Giovanni; Bartolino, RobertoItem Qualita dell'olio e caratterizzazione molecolare di olea europea(2011-10-26) Bucci, Cristina; Sindona, Giovanni; Bartolo, Gabriele; Bartolino, RobertoItem Different medicinal chemistry approaches towards the identification of novel targets in breast cancer(2013-12-02) Pisano, Assunta; Bartolino, Roberto; Gabriele, Bartolo; Sindona, Giovanni; Maggiolini, MarcelloG protein-coupled receptors (GPCRs) belong to the largest family of cellsurface molecules representing the targets of approximately 40% of current medicinal drugs (Overington, J.P et al 2006). GPCRs are ubiquitous in mammalian (Bockaert, J. et al. 1999), regulate several physiological processes and play an important role in multiple diseases ranging from cardiovascular dysfunction, depression, pain, obesity to cancer (Rosenbaum D.M. et al. 2011). One member of this superfamily, named GPR30/GPER, mediates estrogen signaling in different cell contexts, leading to gene expression changes and relevant biological responses (Filardo E.J et al. 2000, Bologa C.G.et al. 2006, Maggiolini M. and Picard D. 2010). GPER acts by transactivating the Epidermal Growth Factor Receptor (EGFR), which thereafter induces the increase of intracellular cyclic AMP (cAMP), calcium mobilization and the activation of the phosphatidylinositol 3-kinase (PI3K) and the mitogen-activated protein kinases (MAPKs) (Maggiolini M. and Picard D. 2010). Moreover, the GPER-mediated transduction pathways activated by estrogens trigger the expression of a typical gene signature, including the expression of cfos and the gene encoding the connective tissue growth factor (CTGF), which are involved in the proliferation and migration of diverse cell types (Lappano R. et al 2012a, Madeo A. and Maggiolini M. 2010). On the basis of these findings, the first objective of the present study was the characterization of GPER from different points of view: GPERmediated signaling pathways and biological functions, selective ligands and molecular characterization of the receptors. In particular, the research project focused on:1. the transduction pathways by which the environmental contaminant Bisphenol A (BPA) influences cell proliferation and migration of human breast cancer cells and cancer-associated fibroblasts (CAFs); 2. the characterization of novel carbazole derivatives as GPER agonists in ER-negative breast cancer cells; 3. the isolation and characterization of GPER in estrogen-sensitive cancer cells by Mass Spectrometry. Additionally, the second section of this doctoral thesis was focused on the evaluation of the cytotoxic activity of novel synthesized compounds, given the interest and the need to discover new molecules against cancer. In particular, novel titanocene-complexes were studied evaluating their ability to elicit repressive effects on the growth of estrogen-sensitive breast cancer cells.